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Abstract

Determining a speaker’s message requires discrimination between discrete
alternatives based on inherently noisy, non-discrete acoustic cues. This en-
tails that there is always some degree of uncertainty in perception of speech.
Despite well-documented e�ects of gradient sensitivity to within-category
acoustic variation and growing interest in statistical e�ects in speech percep-
tion, very little is yet known about the time course of perceptual uncertainty
in speech percpetion. Two visual world eyetracking experiments investig-
ated how changes in acoustic cue values and the amount of within-category
acoustic variation a�ect perceptual certainty during perception of Cantonese
speech sound contrasts. Participants saw four pictures on screen and heard
an auditory stimulus. Critical pictures were of word pairs that were identical
except for initial consonants (Experiment 1), which were unaspirated (bou2,
‘treasure’) or aspirated (pou2 ‘shop’); or tones (Experiment 2), which were
high (jin1, ‘carpet’) or mid (jin3, ‘arrow’). Auditory stimuli consisted of
a continuum of 12 tokens of increasing VOT (Experiment 1) or pitch (Ex-
periment 2). The number of times participants heard each token followed
a bimodal distribution. The amount of within-category variation di�ered
between conditions: low-variance versus high-variance. Eye movements were
monitored until participants selected a picture by clicking on it. The Eu-
clidean distance of fixations from the target and competitor pictures was
analysed using Generalised Additive Mixed Modelling. Results showed that
the distance of fixations from target and competitor pictures over the course

Preprint submitted to Journal of Memory and Language 24th June 2016



of the trial varied as a function of VOT value (Experiment 1) or pitch (Exper-
iment 2), providing evidence for gradient, nonlinear sensitivity to cue values.
Interestingly, the time course of these e�ects di�ered between the target dis-
tance and competitor distance models. Moreover, in both experiments, the
e�ect of the acoustic cue value significantly interacted with how much acous-
tic variation participants heard. In the VOT models, fixations were closer to
the competitor in the high-variance condition. However, in the pitch models,
the category boundary was shifted and the opposite pattern emerged. This
indicates that the shape of the acoustic cue distribution plays an essential
role in perceptual processing. With little statistical variance, speech sound
representations become more robust. Yet they also lead to greater uncer-
tainty in the face of unexpected speech tokens. In addition, the pattern of
e�ects over time suggests that the e�ect of statistical distribution (cue vari-
ance) suggests a global strategy in response to the level of uncertainty: as
uncertainty increases, verification looks also increase.
Keywords:
discriminative learning, statistical learning, speech perception, Cantonese,
lexical tone
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1. Introduction1

Human listeners rely on highly variable, non-discrete acoustic informa-2

tion to discriminate between the di�erent possible messages a speaker might3

intend to convey in an utterance. The question of how acoustic variation4

a�ects perceptual uncertainty during speech processing is an intriguing one.5

Listeners use variation between speech sounds to discriminate between words6

and messages. For example, in English, voice onset time (VOT) is longer in7

voiceless sounds (e.g. the /p/ in pat) than voiced sounds (e.g. the /b/ in8

bat). VOT is the time between the release burst of the consonant and the9

onset of voicing in the vowel, and is the most important cue for distinguishing10

voiced from voiceless sounds in English. However, there is also a considerable11

amount of variation within speech categories. For example, the mean VOT of12

English /p/ is 58 ms (Lisker and Abramson, 1964), but /p/ can be produced13

with a range of VOTs. Acoustic variation can even occur in productions14

of the same word by the same speaker in the same phonetic context under15

controlled lab settings (Newman, Clouse, and Burnham, 2001) and increases16

greatly across speakers (Ladefoged and Broadbent, 1957), in di�erent phon-17

etic contexts (Nixon, Chen, and Schiller, 2015a) and even depending on word18

frequency (Gahl, 2008).19

The high degree of variation in the acoustic signal means that there is20

nothing in the speech stream that conclusively points to particular mean-21

ings, words or even phonemes. The listener can only use cues to assess the22

likelihood that a speaker intended one message rather than another, mean-23

ing that there is always some degree of uncertainty in the process of speech24

perception. In addition to the issue of within-category acoustic variation,25

listeners also face the challenge of changes in the whole statistical distribu-26

tion of acoustic cues in particular contexts, for example, when encountering27

a new speaker or accent. Recent evidence suggests that both variation in28

acoustic cues (McMurray, Tanenhaus, and Aslin, 2002; McMurray, Aslin,29

Tanenhaus, Spivey, and Subik, 2008a; McMurray, Tanenhaus, and Aslin,30

2009) and changes in the statistics of cue distributions a�ect listeners’ level31

of perceptual uncertainty during speech perception (Clayards, Tanenhaus,32

Aslin, and Jacobs, 2008; Escudero, Benders, and Wanrooij, 2011; Escudero33

and Williams, 2014; Wanrooij, Boersma, and van Zuijen, 2014; Wanrooij,34

Escudero, and Raijmakers, 2013; Liu and Kager, 2011). The present study35

aims to contribute to our understanding of perceptual uncertainty in speech36

perception by examining the time course of e�ects of a) variation in acoustic37
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cues and b) the degree of variance in statistical distributions of acoustic cues38

in native Cantonese listeners. In this paper, we use the term variance to39

describe, in a given speech sample, the amount of acoustic variation there is40

within a speech category. This term refers to the degree to which acoustic41

values spread out from the mean of the distribution of that speech category.42

A variance of zero means that all values are identical.43

Early accounts claimed that speech perception was ‘categorical’ in that44

listeners were unable to detect within-category acoustic variation, and only45

able to detect variation when it occurred across boundaries. Evidence in46

favour of this claim came from studies showing sharp categorisation functions47

between speech categories, and chance-level performance in detecting within-48

category acoustic di�erences (e.g. Liberman, Harris, Ho�man, and Gri�th,49

1957; Ferrero, Pelamatti, and Vagges, 1982; Schouten and van Hessen, 1992).50

However, more recently, abundant evidence has accumulated demonstrating51

listeners’ remarkable sensitivity to fine-grained phonetic information, given52

the appropriate task (e.g. Andruski, Blumstein, and Burton, 1994; Dahan,53

Magnuson, Tanenhaus, and Hogan, 2001; Marslen-Wilson and Warren, 1994;54

Utman, Blumstein, and Burton, 2000; McMurray et al., 2008a, 2002, 2009).55

Moreover, not only are listeners sensitive to gradient acoustic variation,56

they are able to rapidly adapt to context-specific changes in acoustic char-57

acteristics of speech, based on the e�ectiveness of a particular dimension58

for speech recognition (Idemaru and Holt, 2011, 2014). Relatedly, listen-59

ers are also sensitive to frequency distributions of acoustic cues. One line60

of research has investigated how the acoustic distance between speech cat-61

egories a�ects categorisation accuracy. For example, several studies have62

shown that when trained with a unimodal distribution (no distance between63

categories), participants are less likely to categorise the endpoints of a dis-64

tribution as di�erent, compared to when they are trained with a bimodal65

distribution (Maye and Gerken, 2000; Maye, Weiss, and Aslin, 2008; Liu66

and Kager, 2011; Escudero and Williams, 2014; Wanrooij et al., 2014; Maye,67

Werker, and Gerken, 2002). Even when trained with a bimodal distribution,68

a greater distance between categories improves categorisation accuracy, com-69

pared to training with a bimodal distribution with a small distance between70

categories (Escudero et al., 2011; Wanrooij et al., 2013).71

Much of the research in adult distributional learning has focused on the72

acquisition and development of non-native contrasts. For example, a series of73

recent studies has investigated the e�ects of statistical distributions on non-74

native perception of Dutch vowel contrasts (Escudero et al., 2011; Gulian,75
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Escudero, and Boersma, 2007; Wanrooij et al., 2013). Motivated by the ob-76

servation that infant and foreigner directed speech has a ‘stretched’ vowel77

space, Escudero et al. (2011) investigated e�ects of the acoustic interval78

between vowel categories in second language acquisition. They used nat-79

ural bimodal (reduced acoustic interval; i.e. vowel categories were similar to80

each other) versus enhanced bimodal distributions (increased acoustic inter-81

val) to train Spanish learners to distinguish a Dutch vowel contrast. After82

two minutes of exposure natural bimodal or enhanced distributions, there83

was an increase in ‘correct’ categorisation, compared to the music (control)84

group. This increase only reached significance in the enhanced group.85

Most studies of distributional learning in adults have used o�ine categor-86

isation responses as the measure of learning. Categorisation measures provide87

information about the final outcome of the decision process; however, they do88

not provide information about online processing during perception itself. In89

discussions of e�ects on categorisation, it is often implicitly or explicitly as-90

sumed that assigning tokens to one category rather than two occurs because91

the two tokens were not discriminated. This assumption may not necessarily92

be justified. In a forced-choice categorisation task, regardless of the degree93

of uncertainty, or any gradient degree of goodness of fit with one category or94

another, the participant must make a binary choice. While it is interesting95

that factors such as cue distribution can a�ect even the final outcome of the96

decision process, examining the moment by moment online processing can97

tell us about how subtle di�erences in statistical distributions can a�ect the98

development of perceptual processes over time, prior to the decision process.99

One interesting and innovative recent eyetracking study (Clayards et al.,100

2008) is, to the best of our knowledge, the only other study that has used101

online measures to investigate statistical processing of acoustic cues dur-102

ing perception of native speech contrasts. This study has examined how the103

amount of within-category acoustic variation a�ects perceptual certainty. Us-104

ing the visual world paradigm (VWP; Allopenna, Magnuson, and Tanenhaus,105

1998), Clayards et al. (2008) tested the hypothesis that greater variation in106

the acoustic signal would lead to greater perceptual uncertainty. Native107

English-speaking participants saw four pictures on screen, heard an audit-108

ory stimulus and were instructed to click on the picture of the word they109

heard. Critical picture stimuli consisted of pairs of words beginning with110

/b/ and /p/ (e.g. ‘beach’ and ‘peach’). Auditory stimuli consisted of a VOT111

continuum which spanned the word pair (e.g. from beach to peach). Present-112

ation frequency of the tokens on the continuum always followed a bimodal113
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distribution. However, the amount of within-category acoustic variation was114

manipulated between participants: participants heard either a high-variance115

or low-variance distribution of the acoustic stimuli.116

In the analysis, the proportion of categorisation responses was calculated117

per participant per condition and for each token on the VOT continuum.118

Overall, the categorisation slope was shallower in the high-variance condi-119

tion, indicating that with greater variation in the acoustic input, participants120

were less consistent in their assignment of cues to the contrastive categories.121

Eye movement data were also analysed for the six points on the continuum122

that had su�cient data points, three each for the /b/ and /p/ words. There123

was a significant e�ect of distribution condition for the /b/ words and a signi-124

ficant interaction between distribution condition and VOT token for the /p/125

words. In both word types, the e�ect was carried by the VOT token closest126

to the category boundary; however, the trend was similar for all VOT tokens127

analysed: there were more looks to the competitor in the high-variance, com-128

pared to the low-variance condition. This provided evidence that the amount129

of variation in the acoustic signal has direct e�ects on speech perception: in-130

creased variance can lead to an increase in perceptual uncertainty.131

Our understanding of how acoustic variance a�ects perceptual certainty132

could be enhanced by knowing at what point in time these e�ects come133

into play. While Clayards et al. (2008) examined the e�ects of acoustic cue134

variance on eye movements, the measure reported in their study was the pro-135

portion of looks over the whole trial. Information about the time course of136

e�ects is important for understanding the underlying mechanism. As listen-137

ers gain experience with the input distribution, does statistical information138

a�ect the early perceptual processes? Is uncertainty a global e�ect that139

influences eye movement behaviour from the onset of the trial? Or is the140

statistical information used only in the later decision process to discriminate141

between alternative candidates? The present study aims to address these142

questions by examining changes in eye movement patterns over the course of143

the trial, including nonlinear interactions between predictors over time.144

Similarly, although listeners’ ability to detect and respond to within-145

category variation is now well established, few studies have investigated the146

time course of its e�ects. One recent VWP study investigated ‘lexical garden147

path’ recovery in English (McMurray et al., 2009). This study used a VOT148

continuum to manipulate bilabial stop word-onsets, creating temporarily am-149

biguous words, such as ‘barricade’ versus ‘parrakeet’. Although the study150

measured the time course of fixations, the main focus was to establish that151
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sensitivity to VOT variation was gradient, rather than categorical. There-152

fore, the discussion of the time course mainly focused on establishing that153

e�ects of within-category di�erences in VOT persist over durations longer154

than a syllable, rather than establishing the point in time where di�erent155

VOT values diverged.156

The large majority of research investigating speech perception processes,157

in general, and sensitivity to cue values and cue distributions in particular,158

has been conducted on alphabetic, Indo-European languages, such as Eng-159

lish. The present study examines speech perception by native speakers of a160

typologically very di�erent language, Hong Kong Cantonese. Cantonese was161

selected for the present experiments in order to extend the investigation of162

perceptual uncertainty e�ects to a new set of speech sounds, which included163

both the previously-investigated temporal cue, VOT, as well as a supraseg-164

mental cue, pitch (f0), in a lexical tone contrast. Cantonese has a complex165

tonal system, with six lexical tones (Bauer and Benedict, 1997; Wiener and166

Turnbull, 2015; Mok and Wong, 2010; Siddins and Harrington, 2015).1 Three167

of these are level tones, in which the primary cue is pitch (f0) height. These168

level tones make Cantonese an ideal language for investigating distributional169

e�ects in tone processing. In addition to being a tonal language, Cantonese170

also di�ers from English in other important respects. Cantonese uses a lo-171

gographic writing system, in which phonology is not explicitly represented.172

Each character represents a particular morpheme and is pronounced with a173

single syllable. The lack of explicit phonological representation influences174

the phonological awareness of Cantonese speakers, leading to more holistic175

processing and less awareness of low-level phonological changes (McBride-176

Chang, Bialystok, Chong, and Li, 2004). In addition, compared to English,177

due to its syllabic structure, Cantonese has a large number of homophones.178

This means that it is often necessary to rely on top-down context e�ects179

to a greater degree in Cantonese than in English. Such cross-linguistic dif-180

ferences call for investigation of typologically diverse languages in order to181

have a complete understanding of language-general mechanisms in speech182

perception.183

The present study. The present study investigates the time course of percep-184

tual uncertainty e�ects during perception of Cantonese tonal and segmental185

speech sound contrasts. Two manipulations were expected to a�ect percep-186

1The number of tones is sometimes reported as nine, including the checked tones.
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tual uncertainty: the location of an acoustic cue along the cue continuum,187

in particular the distance from the category boundary; and the distribution188

condition, that is, amount of within-category acoustic variance in the signal.189

These questions were tested with two sets of models. The first examined the190

Euclidean distance of fixations from the centre of the target picture, and the191

second examined the Euclidean distance of fixations from the centre of the192

competitor picture.193

We tested four main hypotheses. Since we know of no other similar194

study of Cantonese speech perception using VWP, we based these hypotheses195

on studies in English. The first was that the fixations would be further196

from the target and closer to the competitor picture the closer the acoustic197

cue values were to the category boundary. This prediction was based on a198

number of previous studies in English that have shown gradient e�ects of199

acoustic cue values using a VOT continuum (e.g. McMurray et al., 2008a;200

McMurray, Clayards, Tanenhaus, and Aslin, 2008b; McMurray et al., 2009).201

The second was that fixations would be further from the target and closer to202

the competitor in the high-variance condition, compared to the low-variance203

condition, similar to the results of Clayards et al. (2008).204

Our third and fourth hypotheses relate to the time course of e�ects, in205

particular the time course of e�ects of the acoustic cue value and of acoustic206

cue variance. McMurray and colleagues (McMurray et al., 2008b, 2009) found207

that when English-speaking participants were presented with auditory stimuli208

from a VOT continuum, divergences in eye movements to target pictures209

began around 600 ms after stimulus presentation. Therefore, we expected210

to see e�ects of acoustic cue value start to emerge around 600 ms after211

presentation.212

Regarding the time course of e�ects of acoustic variance, as far as we are213

aware, the present research is the first to investigate this question in any lan-214

guage. Therefore the study is largely exploratory in this respect. The time215

course of various other e�ects during speech perception has been investigated216

using VWP. For example, McMurray et al. (2008b) asked at what point asyn-217

chronous cues are integrated during speech perception. Their results showed218

that word-initial cues (voicing and formant transitions) influenced eye move-219

ments to target pictures earlier than cues that occurred later in the signal220

(vowel length), providing evidence for continuous integration of acoustic cues221

as the speech signal unfolds. Another study investigated the time course of222

e�ects of lexically-guided retuning of a fricative contrast. Mitterer and Rein-223

isch (2013) found that e�ects of retuning (f-biased versus s-biased training)224
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occurred very early, around 200 ms after frication onset. They argued that225

this was evidence that retuning occurs at the perceptual level, rather than226

a�ecting higher-order decision processes. The present study di�ers from Mit-227

terer and Reinisch (2013) in that it does not require adjustment of category228

boundaries. Rather, it investigates participants‘ responses to higher or lower229

levels of uncertainty.230

Finally, as the VWP involves both auditory perception and a visual com-231

ponent, we controlled for the e�ects of the location of the pictures on the232

screen in our analysis. The pictures were randomly assigned to a screen pos-233

ition on each trial. We expect that the vertical (top-bottom) and horizontal234

(left-right) position of the target and competitor pictures on the screen will235

influence the distance of fixations from these respective pictures over time.236

In addition to testing these hypotheses, we also present a statistical mod-237

elling method (Generalised Additive Mixed Modelling, GAMM; Wood, 2006,238

2011) that is well suited to analysis of eyetracking data. This is not a new239

statistical method; it has been used in the analysis of a wide variety of ex-240

perimental paradigms investigating cognition of language, as well as other241

fields. However, as far as we are aware, it has not previously been applied242

to the analysis of fixation data from the four-field visual world eyetracking243

paradigm. GAMMs are well suited to analysis of data with a time compon-244

ent, because they allow for analysis of changes of a variable over time. They245

provide solutions to some of the challenges of analysing time series data,246

such as autocorrelation. They also allow for analysis of complex interactions247

(including over time) and nonlinear random e�ects. A description of the248

modelling method and some of its benefits will be returned to in the Method249

section.250

2. Experiment 1 Voice onset time251

2.1. Method252

Participants. Thirty-seven native Cantonese-speaking undergraduate students253

from the Chinese University of Hong Kong participated in the experiment254

for payment. Participants were tested individually in a quiet room.255

Experiment design and stimuli. The experiment design and stimuli were256

based on those presented in Clayards et al. (2008). Visual stimuli were pic-257

ture pairs whose names began with either bilabial stops (‘b’, ‘p’) or alveolar258

a�ricates (‘j’, ‘ch’). The two members of each word pair were identical except259
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Table 1: Presentation frequency per variant per condition: each variant represents one
step on the VOT continuum

Number of iterations

Variant 1 2 3 4 5 6 7 8 9 10 11 12
Distribution Low-variance 0 6 54 108 54 6 6 54 108 54 6 0
condition High-variance 6 24 54 60 54 30 30 54 60 54 54 6

for the initial consonants, which were either unaspirated (bou3, ‘cloth’; jun1260

‘brick’) or aspirated (pou3, ‘shop’; chun1, ‘village’). Pictures were black-on-261

white line drawings.262

All auditory stimuli were recorded by a male native speaker of Hong Kong263

Cantonese. Stimuli were then resynthesised into a 12-step VOT continuum264

using the Pitch-Synchronous-Overlap-and-Add (PSOLA) method in PRAAT265

(Boersma and Weenink, 2012), using the unaspirated token as the target for266

resynthesis. Increasing steps of aspiration were added following the stop or267

a�ricate burst before the onset of the vowel. The consonant duration ranged268

from 0 ms to 88 ms for the stops and 40 ms to 260 ms for the a�ricates. The269

vowel portion of the recorded syllables ranged from 432 ms to 571 ms. The270

number of times participants heard each step followed a bimodal distribution,271

with the two peaks of the distributions corresponding to the prototypical272

mean VOT for the unaspirated and aspirated stimuli, respectively (Cheung273

and Wee, 2008; Ng and Wong, 2009). Ten native Cantonese speakers also274

participated in a perception test which verified the stimuli. Table 1 shows275

the presentation frequency of each step on the continuum. Each condition276

contained 456 tokens, 76 for each word pair. All participants heard the same277

number of tokens; only the number of times they heard each token varied278

between conditions: high-variance versus low-variance distributions.279

The experiment consisted of 456 experimental trials, divided into six280

blocks of 76 trials, with breaks between blocks. The order of presentation281

was pseudo-randomised for each participant.282

Procedure. Participants sat at a comfortable viewing distance from the com-283

puter screen and wore an SR Eyelink II head mounted eye-tracker with a284

sampling rate of 500 Hz. Stimulus presentation and data acquisition were285

conducted using SR Research Experiment Builder computer software (2011;286
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Figure 1: Sample screen display during stimulus presentation.

version 1.10.165). The session began with 12 familiarization trials in which287

participants saw the pictures and their corresponding written labels once288

each. This was followed by a practice block to familiarize participants with289

the experimental procedure. None of the experimental pictures or words were290

presented during the practice phase.291

Each experimental trial began with drift correction to ensure accurate292

calibration of the equipment, followed by brief presentation (1000 ms) of293

four pictures, one in each quadrant of the screen (see Figure 1). The purpose294

of giving an advance preview of the stimuli was to reduce the time and295

likelihood of participants scanning the pictures at the beginning of the trial,296

and hence to reduce noise in the eye movement data. The display always297

contained two test items and two filler items. The location of the picture298

conditions on screen, as well as their relative location, was randomised to299

avoid strategic e�ects. The picture preview disappeared, replaced with a300

gaze-contingent fixation cross, which ensured participants were looking at the301

centre of the screen at the beginning of the critical trial period. The pictures302

reappeared and, simultaneously, one of the auditory stimuli was presented303

and participants chose the picture they thought most appropriate by clicking304

on it with the mouse. Eye movements were monitored from the onset of the305

preview until participants made a response. (Analysis was conducted on a306

shorter period, starting just prior to the auditory stimulus).307

11



3. Analysis308

Eye movement data were analysed using Generalised Additive Mixed Mod-309

eling (GAMM; Wood, 2006, 2011) using the mgcv package (version 1.8-7) con-310

ducted in R (version 3.2.2; R core team, 2015; www.r-project.org). GAMM311

is a type of Generalised Linear Modelling (GLM) that uses nonlinear smooth312

functions to model nonlinear e�ects for continuous predictors.313

Generalised Additive Models2 are a well-established method of analysis314

used with a wide range of psychological, psychophysiological and speech pro-315

duction data, ranging from EEG data (de Cat, Klepousniotou, and Baayen,316

2014, 2015; Nixon, 2014; Nixon, van Rij, Li, and Chen, 2015b; Tremblay317

and Newman, 2014), reaction times (Feldman, Milin, Cho, Moscoso del318

Prado Martin, and O’Connor, forthcoming; Pham, Hien, and Baayen, 2013)319

and pupilometry (van Rij, Pya, van Rijn, Wood, and Baayen, in preparation)320

to articulography (Arnold, Wagner, and Baayen, 2013; Tomaschek, Wieling,321

Arnold, and Baayen, 2013) and dialectology (Wieling, Montemagni, Ner-322

bonne, and Baayen, 2014). As far as we are aware, the present study is the323

first to apply GAMMs to the typical four-field visual world paradigm, al-324

though it has previously been to used in the analysis of single-field gaze data325

(van Rij, Hollebrandse, and Hendriks, in press).326

There are several characteristics of GAMMs that make them particularly327

well suited to analysis of visual world paradigm eye movement data. Firstly,328

GAMMs drop the assumption of a linear relationship between dependent and329

independent variables. Assuming linearity when the relationship in the data330

is nonlinear can lead to failure to observe regularities or structure that do331

exist in the data (see Tremblay and Newman, 2014, for a discussion of the be-332

nefits of relaxing the linearity assumption in psychological research). Instead,333

GAMMs determine the linearity or degree of nonlinearity from the data itself.334

The method used for this is penalized iteratively re-weighted least squares335

(PIRLS; see Wood, 2006, for details). PIRLS determines the optimal linear336

or nonlinear equation for avoiding both over-fitting and over-generalizing of337

the model. Secondly, GAMMs allow for analysis of continuous variables and338

nonlinear interactions. This is an advantage for analysis of fixation data,339

as processing is often influenced by continuous predictors, such as time and,340

2The ‘mixed’ in Generalised Additive Mixed Models refers to the inclusion of random
e�ects, such as participant and item random e�ects in the present study, in addition to
fixed e�ects. That is, a GAMM is a type of GAM that includes random e�ects.
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in the present study, location on the acoustic continuum; importantly, often341

several predictors may interact. A third aspect of GAMMs that benefits342

VWP eye movement analysis is the inclusion of random e�ects. This allows343

the model to take into account that repeated measures are taken from par-344

ticipants and items without the need to average over them in the analysis.345

This is also an important means of reducing autocorrelation (see Baayen,346

van Rij, de Cat, and Wood, to appear; Baayen, Vasishth, Bates, and Kliegl,347

2015, for a discussion of the benefits of GAMMs for reducing autocorrelation348

in language-related experimental data). Finally, a common problem in many349

experimental data sets, and particularly in data with a time series compon-350

ent, such as eye tracking, is that autocorrelation can occur between data351

points. In the mgcv package, methods have been implemented specifically to352

deal with autocorrelation (Baayen et al., to appear).353

All predictors of interest were entered into a GAMM model. Predictors354

that did not contribute to model fit were eliminated. Model comparison was355

conducted using a ‰2 test of fREML scores in the compareML function in the356

itsadug package (version version 1.0.4; van Rij, Baayen, Wieling, and van357

Rijn, 2015) in R. Together with the model comparisons and model plots, the358

statistics provided by the model summaries were used to determine whether359

each predictor contributed to the variance explained by the model.360

Fixation data were modelled as two separate continuous variables of Eu-361

clidean distance: distance from the centre of the target picture (target dis-362

tance) and distance from the centre of the competitor picture (competitor dis-363

tance). Figure 2 shows a sample trial as an illustration of the target distance364

measure. There are least two advantages to modelling the eye movement365

data in this way. Firstly, it allowed us to model the data as a gradient meas-366

ure, rather than a binary variable with an arbitrary cut-o� point. Because367

data points that fall short of the target picture or fall between two pictures368

are included, the distance measure is more likely to pick up on uncertainty369

e�ects, such as hesitant oculo-motor movements, undershooting the mark370

due to low activation or inaccurate movements due to competing activations.371

Secondly, the models are more robust, because more data is included. We372

initially ran models with the proportion of fixations on the target picture as373

the dependent variable. However, this led to artefacts in the early fixations374

due to insu�cient data in the initial 200 ms of the trial. The distance meas-375

ure solved this issue. Separate models were run for each of these dependent376

variables.377

Because we were interested in the time course of processing over the378
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Figure 2: Illustration of the Euclidean-distance-from-target measure. This figure shows a
random sample of data points from a trial with the target picture in the top right corner.
Fixations 1, 2 and 3 are sample fixations from this trial. Note that the absolute X and
Y coordinates on the figure axes are measured from the top left corner of the screen.
However, the measure of interest (Euclidean distance) is measured from the centre of the
target picture. For each fixation, the Euclidean distance (in pixels) from the centre of the
target picture is calculated from the X (x-axis) and Y coordinates (y-axis). For a given
fixation, a distance greater than 176 is outside the interest area and a distance of 125 or
less is within the target picture interest area.

whole trial, from early perceptual processing to later decision processes, the379

predictor time was included. A 1400 ms time window from -200 ms (i.e. 200380

ms prior to presentation of the auditory stimulus) to 1200 ms was selected381

for analysis. After this time, the number of data points became too few, as382

mean response time was approximately 1300 ms. An initial model was run383

with data downsampled to twenty milliseconds (50 Hz). However, inspection384

of the residuals of the first statistical model indicated that a moderate level385

of correlation remained between subsequent measurements. Therefore, to386

reduce autocorrelation further, forty millisecond (25 Hz) time bins were used.387

VOT (Experiment 1) and pitch (Experiment 2) were modelled as con-388

tinuous variables, centred around 0. The centred values ranged from -4.5 to389

4.5, with the distribution peaks at -2.5 and 2.5. Distribution condition was390

modelled as a factor with two levels, low variance and high variance. As391

control variables, the location of the target on the screen was included in392

the target distance models, and location of competitor in the competitor dis-393

tance models. This was a factor variable with four levels: top-left, top-right,394

bottom-left and bottom right. Changes over the course of the experiment395

were investigated by including a predictor of trial. However, this did not396

improve model fit, so was removed from the analysis.397
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The initial model included intercepts for condition (low- vs. high-variance)398

and target position, a nonlinear interaction3 of centred VOT (or pitch) by399

condition over time and a nonlinear regression line4 of target position over400

time. After running the models, the residuals were examined to determine the401

degree of remaining autocorrelation. We included an AR1 model to account402

for autocorrelation in the residuals with the rho parameter, which measures403

how much the residuals of the current data point are determined by the re-404

siduals at the previous data point. In GAMM models, shrunk factor smooths405

can be used to model random e�ects. They are the nonlinear equivalent of406

by-subject and by-item random slopes and intercepts in an LMM.407

4. Results408

4.1. Target distance model: distance of fixations from the target picture409

4.1.1. Random e�ects410

The best-fit model for target distance (Appendix A) includes trends over411

time as random e�ects per participant per target item. Random e�ects were412

modelled as a separate smooth for each participant-item pair in order to413

capture participants’ variable responses to the di�erent items. Each random414

wiggly curve represents the di�erence in eye movement behaviour over time415

for a particular participant for a particular item compared to the average.416

4.1.2. E�ects of voice onset time value on target distance417

The best-fit model included a smooth of centred VOT over time (Ap-418

pendix A), which significantly contributed to variance explained in the model419

(F(65.706, 476634.3)=98.5). Estimated e�ects of VOT over time are shown420

in the top row of Figure 3. In the figure, time is represented on the horizontal421

axis. Centred VOT is on the vertical axis. Category means are at VOT -2.5422

(for the unaspirated stimuli, e.g. bou2) and 2.5 (for the aspirated stimuli,423

e.g. pou2). The distance of fixations from the centre of the target picture424

is plotted on the z-axis, represented by colour codes. Higher values (shown425

in yellow) indicate a relatively greater distance from the target; lower values426

3In the mgcv package, this type of nonlinear interaction is modelled with the te()
function. It includes all main e�ects and interactions.

4This nonlinear regression line is modelled with the ti() function. In the mgcv package,
the ti() function can be used to model partial e�ects, including nonlinear regression lines
and nonlinear interactions without the main e�ects or lower-level interactions.
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(shown in blue) indicate a relatively shorter distance. The key at the bottom427

left of each panel shows the corresponding pixel values and z-limits for each428

model plot. Note that the range is di�erent between the target distance plot429

(top row) and the competitor distance plots (bottom row): the target plot430

ranges between 80 and 320 pixels, while competitor plots range between 200431

and 440 pixels. The scale is the same. Random e�ects are excluded from432

these plots. A plot of the raw data for target distance in Experiment 1 is433

provided in Appendix E (upper panel). To assist with interpretation, par-434

ticularly for readers who are unfamiliar with topographic plots, Appendix G435

provides an illustration of the mapping between the topographic plot and a436

line plot of the raw data.437

The plot indicates that changes in eye movements over the course of the438

trial occur di�erently at di�erent points on the VOT continuum. Over the439

course of the trial period, the pattern of eye movements increasingly reflects440

the di�erences in VOT values, with di�erential fixation behaviour at central441

and outer regions of the continuum. Prior to and for the first 200 ms after442

presentation of the auditory stimulus, the plot shows a flat distribution.443

Fixations are consistently around 280 pixels from the target; that is, the444

distance between the centre of the target and the fixation cross. At around445

200 ms, the eyes begin to move away from the fixation cross. From around446

400 ms, the distance steadily decreases until the end of the trial. Di�erences447

between VOT values begin to emerge around 400-500 ms. The decrease in448

distance from the target occurs more rapidly at the distribution peaks and449

peripheries, compared to the central values. The di�erence in distance from450

the target remains throughout the trial, with a consistently greater distance451

for the central VOT values, compared to the outer values from around 450452

ms until the end of the trial.453

4.1.3. E�ects of distribution condition on target distance454

The VOT-by-condition interaction was not significant. Initial models,455

which did not include a rho parameter, hinted that there might be an ef-456

fect of distribution condition. However, once autocorrelation was reduced by457

including rho, the ‰2 test of fREML scores showed that including an interac-458

tion with distribution condition no longer significantly improved fit. In the459

upper panel of Figure 3 condition is collapsed.460
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Figure 3: Topographical maps for the VOT models in Experiment 1. Top row: model fit
for the best fit model of Euclidean distance from the target picture. The predictor Target
Position is ‘top left’ in this plot (see the left panel of Figure 4 for the e�ects of Target
Position). Bottom row: model fit for the best fit model of Euclidean distance from the
competitor picture for the low-variance (left panel) and high-variance conditions (right
panel). The predictor Competitor Position is ‘top left’ in these plots (see the right panel
of Figure 4 for the e�ects of Competitor Position). All plots: Estimated e�ects are in
pixels. Time (in milliseconds) is represented on the x-axis. Voice onset time (VOT) is on
the y-axis. VOT is centred around 0, the category boundary. The negative VOT values
correspond to unaspirated stimuli (e.g. bou), the positive values to aspirated stimuli (e.g.
pou). Category means are at VOT -2.5 and 2.5, respectively. Distance is plotted on the z-
axis, represented by colour codes. Higher values (yellow areas) indicate a relatively greater
distance; lower values (blue areas) indicate a relatively smaller distance. The key in the
bottom left corner shows corresponding pixel values and the z-limits. Note that the range
di�ers between the surface plots for target and competitor model plots; target plots (top
row): 80 to 320 pixels; competitor plots (bottom row) 200 to 440 pixels. (The scale is the
same). Random e�ects are excluded from these plots.
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4.1.4. E�ect of target position on target distance461

Target picture position was included in the model as a control variable.462

If participants had search strategies, such as left-to-right or top-to-bottom463

scanning, then the eyes would be likely to fall on the target more quickly464

when the target occurred in certain positions on the screen. Including these465

e�ects would strengthen the ability of the model to capture our predictors466

of interest by accounting for this variation. The model summary shows that467

target position had a significant e�ect on the distance of fixations from the468

target over time (top-left: F(3.979, 476634.3) = 321.5; top-right: F(3.941,469

476634.3) = 254.7; bottom-left: F(1.002, 476634.3) = 895.8; bottom-right:470

F(3.990, 476634.3) = 360.9). The left panel of Figure 4 shows the e�ect of471

target position over time. Time is on the x-axis, target distance on the y-472

axis. Each position on the screen is represented by a coloured line according473

to the key in the top right corner of the plot. The plot shows substantially474

di�erent distances, depending on the target position. Fixations are closest475

to the target when the target is in the top left corner, and furthest when it476

is in the bottom right corner. The e�ect emerges immediately in the first477

fixation, around 150-200 ms, and continues until late in the trial, around 800478

ms. The eyes locate the target more quickly when it is in the top left of the479

screen; otherwise the eyes may initially move further away from the target480

compared to the initial position on the fixation cross. Note that this is true481

on average, but does not entail that this occurs on every trial. Indeed, given482

the size of the e�ect, it is unlikely that it occurs on every trial.483

4.2. Competitor distance model: distance of fixations from the competitor484

picture485

Apart from investigating the e�ects of uncertainty on how accurately486

participants fixated the target, we were also interested in how perceptual487

uncertainty a�ects the degree to which participants were drawn towards the488

competitor picture. We therefore ran models looking at the distance of fix-489

ations from the competitor picture. This measure corresponds to Clayards490

et al. (2008), in which the by-trial proportion of fixations on the competitor491

object was reported. The models included the same predictors as the target492

distance models, only the dependent variable was the distance of fixations493

from the competitor picture, and competitor position on the screen replaced494

target position. A visualisation of the raw data for competitor distance in495

Experiment 1 is shown in Appendix E (lower panel).496
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Figure 4: Model fit for the e�ect of target position in the best fit model for the Euclidean
distance from the target (left panel) and the e�ect of competitor position on the Euclidean
distance from the competitor (right panel) in Experiment 1. Time (ms) is on the x-axis.
Distance from the target (left panel) or competitor (right panel) is on the y-axis. Each
position on the screen is represented by a line, colour-coded according to the legend in the
top right corner. The predictor Condition is set to low-variance; VOT is set to -0.5. As
the models did not include an interaction between target/competitor position and VOT
or target/competitor position and condition, the estimated e�ects of position are the same
for low and high variance and for the di�erent VOT values. Error bars are 95% confidence
intervals (indicating the uncertainty around the model estimates).
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4.2.1. E�ects of voice onset time value on competitor distance497

The model summary for competitor distance (Appendix B) shows the498

interaction of VOT by condition over time. The baseline (low-variance) con-499

dition is shown in the lower left panel of Figure 3. For all VOT values, the500

distance from the competitor first shows a dip (blue area), then steadily in-501

creases over time. Comparison of the estimated distance from the target and502

competitor pictures in this time period suggests that the eyes initially move503

toward the competitor, before rejecting it and moving towards the target.504

The e�ect of VOT starts to emerge in the first fixations of the trial,505

around 150 ms to 300 ms after stimulus presentation. The distance from506

the competitor decreases for the outer and mean VOT values earlier than507

for the central VOT values, as the eyes move towards the competitor object.508

After this initial period, the distance from the competitor is smallest at the509

central values. This pattern suggests that when the VOT is near the cat-510

egory boundary, it takes participants longer to move their eyes away from511

the fixation cross for the first fixation of the trial. At all VOT values, the512

initial fixations tend to move towards the competitor object, before reject-513

ing it and moving towards the target. At the central values, this is process514

seems to be delayed, with eye movements both towards and away from the515

competitor occurring later at the central values than at the mean and outer516

values. That is, the short distance from the competitor (blue area) starts517

later and continues until later in the trial at the central VOT values. The518

di�erence in competitor distance between central and outer VOT values re-519

mains throughout the trial. At the outer VOT values, the distance from520

the competitor steadily increases, starting from around 550 ms (green then521

yellow areas). Near the category boundary, although the distance increases,522

it does not reach the same level as the outer VOT values. This suggests that523

a greater degree of uncertainty remains for the central VOTs right until the524

end of the trial.525

4.2.2. E�ects of distribution condition on competitor distance526

As noted above, there was a significant e�ect of VOT by condition over527

time. Including a VOT-by-condition interaction significantly improved model528

fit, compared to a model without condition (‰2(5.0)=8.663, p < .004). This529

e�ect is shown in the models plots (lower panels of Figure 3), which show530

the distance of fixations from the centre of the competitor object in the low-531

variance (left panel) versus the high-variance condition (right panel). The532

e�ect of distribution condition seems to emerge mainly at the central VOTs at533
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the beginning and end of the trial, where fixations are closer to the competitor534

in the high-variance condition than in the low-variance condition. In the early535

fixations, the e�ect of VOT is flatter in the high-variance compared to the536

low-variance condition. In the low-variance condition, the eyes take longer537

to move away from the fixation cross at the central values compared to the538

more peripheral values. However, this e�ect is absent in the high-variance539

condition, in which the eyes move towards the competitor object at around540

the same time for all VOT values. From around 500 ms onwards, fixations541

are closer to the competitor object around the central VOT values in the542

high-variance compared to the low-variance condition.543

4.2.3. E�ects of the position of the competitor on the screen on competitor544

distance545

The model summary shows that competitor position had a significant546

e�ect on the distance of fixations from the competitor over time (top-left:547

F(3.969, 476712.6) = 118.975; top-right:F(3.736, 476712.6) = 87.236; bottom-548

left F(3.799, 476712.6)= 84.505; bottom-right F(3.939, 476712.6)= 120.162).549

The results are shown in the right panel of Figure 4. The general pattern550

is the inverse of the e�ects of target position in the target distance models.551

The fixations are closest to the competitor picture when it is in the top left552

corner, and furthest when it is in the bottom right corner.553

4.3. Discussion554

Experiment 1 investigated the e�ects of perceptual uncertainty on eye555

movements towards target and competitor pictures during perception of556

Cantonese words beginning with aspirated and unaspirated consonants. Two557

causes of uncertainty were investigated. On the one hand, this experiment558

investigated the time course of e�ects of changes in the acoustic cue value,559

VOT, during speech perception. This manipulation was the same for all par-560

ticipants. Greater perceptual uncertainty was predicted as cues approached561

the category boundary. On the other hand, the experiment investigated the562

e�ects of within-category acoustic variance. That is, the presentation fre-563

quency of the di�erent acoustic cue values. Based on the results of Clayards564

et al. (2008), we predicted that fixations would fall closer to the target and565

further from the competitor for participants in the low-variance condition,566

compared to the high-variance condition.567
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4.3.1. E�ects of time568

Overall, the GAMM models for Experiment 1 showed that fixations be-569

came closer to the target and further from the competitor over time. How-570

ever, this was a nonlinear trend. In the target distance model, there was an571

initial period of relative stability, followed by a steady convergence on the572

target. In the competitor distance model, there was a decrease in distance573

from the competitor in the early period around 200-400 ms, as fixations ini-574

tially approached the competitor for a period before moving away from it.575

After this period, fixations began to steadily approach the target.576

4.3.2. E�ects of voice onset time value577

Both the target distance and the competitor distance models showed a578

nonlinear e�ect of VOT value on participants’ perceptual uncertainty. In the579

target distance model, at the outer VOT values, fixations began to rapidly580

approach the target picture by around 500 ms; by around 700-800 ms, fixa-581

tions were within the target picture interest area, on average. However, at582

the more central VOT values, a substantial amount of uncertainty remained583

throughout the trial. The distance from the target remained substantially584

greater near the category boundary than at the outer VOTs right until the585

end of the trial. Conversely, in the competitor distance models, the distance586

from the competitor was generally smaller at the central VOT values, com-587

pared to the outer values. This e�ect of VOT on distance to the competitor588

emerged very early, in the first fixations of the trial. Near the category bound-589

ary, it took longer for the eyes to move away from the fixation cross. After590

this delay, fixations were closer to the competitor at the category boundary591

for the rest of the trial.592

Interestingly, the e�ect of VOT value seemed to emerge mainly between593

the central values and the distribution peaks. The exaggerated acoustic in-594

formation in the outer cue values did not seem to greatly benefit participants595

in terms of the time it took to fixate the target. Another interesting observa-596

tion is that these e�ects are quite symmetrical. This is surprising given that597

within-category acoustic variance is asymmetrical in language. In Cantonese598

bilabial stop production (as in English), the variance in unaspirated stops is599

much lower than in aspirated stops. The standard deviation of unaspirated600

stops in syllable production is less than 6 ms, compared to more than 21601

ms in aspirated stops (Ng and Wong, 2009). Given that there is more than602

three times as much variation in aspirated stimuli in speech, we might ex-603

pect that listeners are more tolerant of variation in aspirated stimuli in the604
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experiment setting. For example, we might expect to see steeper slopes on605

the unaspirated side in the plots. But this was not the case.606

4.3.3. E�ects of acoustic cue variance607

The target distance models did not show any significant e�ects of distri-608

bution condition. The competitor distance models, on the other hand, did609

show a significant interaction with VOT over time. The model plots indicate610

that the biggest di�erences between conditions occur at the central VOTs,611

near the category boundary. In the low-variance condition, the eyes seem612

to take longer to move away from the fixation cross at the central values at613

the beginning of the trial. Later in the trial, after about 600-700 ms, fixa-614

tions are closer to the competitor in the high-variance condition, compared615

to the low-variance condition. This result is line with our hypothesis that616

the greater degree of within-category acoustic variance would lead to greater617

uncertainty in the high-variance condition. The result is also consistent with618

the findings of Clayards et al. (2008), which showed that the overall pro-619

portion of fixations on the competitor versus the target was greater in their620

high-variance condition. One of the aims of this study was to extend the621

investigation to examine the time course of e�ects. The competitor distance622

model shows that the e�ect of distribution emerges early, a�ecting the very623

first fixations, and continues over the course of the trial.624

This early e�ect could be attributed to changes in early perceptual pro-625

cessing of the acoustic information as a result of the distributional input.626

However, given that there was no e�ect of trial in this experiment, it is un-627

likely that the e�ect stems from ‘perceptual learning’ such that there were628

shifts in the category boundary. Another possibility is that participants ad-629

opt a global strategy in response to the level of uncertainty. As uncertainty630

increases, participants look around more in search of additional evidence to631

support their selection. Participants tend to fixate the competitor before632

moving to the target. They do this more and later in the trial in the high-633

variance condition. This suggests that these fixations are part of a kind of634

verification process. As competition between target and competitor increases,635

it takes longer to reject the competitor in favour of the target.636

4.3.4. E�ects of target and competitor position637

An interesting observation that comes out of this study is the e�ect of638

the location of the target and competitor on the screen. Fixations were639

substantially closer to the target when the target was in the top left corner640
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of the screen, and further when it was located in the bottom right; conversely,641

fixations were further from the competitor when the competitor picture was642

located in the top left corner of the screen, and closer when it was located in643

the bottom right. These e�ects are probably the result of scanning strategies644

during the preview period and the early part of the trial. If participants had645

a particular scan path that favoured the top-left over the bottom-right, this646

would enable them to locate the target and reject the competitor better when647

it was in the top-left position and least when it was in the bottom right.648

Though we know of no other study that has reported this e�ect in the649

visual world paradigm, a bias for initial fixations to move to the left is650

known in scene perception research (Dickinson and Intraub, 2009; Ossandon,651

Onat, and Koenig, 2014). This left-to-right, top-to-bottom pattern closely652

matches the direction of eye movements during reading. However, the ex-653

tent to which reading direction contributes to the e�ect is unclear. Cross-654

linguistic studies of scene and face perception have reported mixed results655

(Chokron and De Agostini, 2000; Gilbert and Bakan, 1973; Heath, Rouhana,656

and Abi Ghanem, 2005; Nicholls and Roberts, 2002; Vaid and Singh, 1989)657

suggesting that there may be a language-independent e�ect that is modulated658

by the direction of reading.659

Regarding the time course of e�ects, both the target and competitor660

position e�ects were present for most of the trial, beginning with the first661

fixation. However, the time course is slightly di�erent for target position and662

competitor position. For target position, when the target is in the top left,663

the distance steadily decreases from the first fixation onwards. When the664

target is in the bottom right, in contrast, the first fixations tend to move665

sharply away from the target in the first fixations, perhaps landing on the666

competitor, or a distractor picture. The distance continues to increase until667

around 400 ms. At this time, the participant presumably realises that they668

have made an error and prepares to launch another saccade. But this error669

sets the participant back substantially, and although the distance decreases670

steadily from this point, the lines only come together again around 800 ms,671

towards the end of the trial.672

For competitor position, the overall e�ect is roughly the inverse of the673

e�ect of target position: fixations are furthest from the competitor when it674

is the top left, and come closest when it is in the bottom right. However,675

there are also di�erences in the time course, compared to the e�ect of target676

position. While the lines of the four positions in the target position plot are677

roughly parallel for a large part of the trial, in the competitor position plot,678
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the e�ect is closer to a mirror image. The first fixations move towards the679

competitor when it is in the bottom right and away from it when it is in the680

top left and this pattern continues well into the trial. The probable reason681

for this di�erence in the time course between target and competitor is that682

when fixations land on the target picture, they are much more likely to stay683

there for the rest of the trial. On the other hand, if early fixations land on684

the competitor picture, they are likely to move away again after a time. The685

plot shows that the eyes start moving away from the competitor at around686

400 to 550 ms, depending on its location.687

5. Experiment 2 Tones688

5.1. Method689

Participants. Thirty-nine native Cantonese-speaking undergraduate students690

from the Chinese University of Hong Kong participated in the experiment.691

An additional six participants were recruited, but were excluded from ana-692

lysis due to the eyetracker unexpectedly quitting before the end of the ex-693

periment (four participants) and inability to calibrate (two participants).694

Experiment design and stimuli. The experiment design was the same as Ex-695

periment 1, except that di�erent stimulus items were used. Visual stimuli696

were picture pairs whose names were word pairs that were either high level697

tone (e.g. jin1 ‘carpet’; gun1 ‘crown’) or mid level tone (jin3 ‘arrow’; gun3698

‘can’). The two members of each word pair had the same segmental syl-699

lable. Initial consonants were either velar stops (‘g’) or alveolar a�ricates700

(‘j’). Auditory stimuli were produced by the same speaker as Experiment701

1. The stimuli were then resynthesised in PRAAT (Boersma and Weenink,702

2012), using the mid tone as the target, to create a 12-step f0 continuum703

with equal semitone steps ranging from 86 Hz to 129 Hz. Syllable duration704

ranged from 357 ms to 491 ms, of which the mean initial consonant duration705

was 41 ms for the stops and 61 ms for the a�ricates.706

Procedure. The procedure was identical to Experiment 1.707

6. Analysis708

Analysis was conducted using the same variables as Experiment 1, except709

that the acoustic cue was a continuum of pitch (f0) values, instead of VOT710

values.711
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7. Results712

7.1. Target distance model: distance of fixations from the target picture713

7.1.1. Random e�ects714

As in Experiment 1, the models for Experiment 2 included by-participant715

by-item random wiggly curves over time (Appendix C). Random e�ects were716

modelled as separate smooths for each participant-item pair.717

7.1.2. E�ects of pitch value on target distance718

Model comparisons showed that model fit was improved by including a719

nonlinear interaction of pitch by condition over time. The model summary720

for target distance is shown in Appendix C. A visualisation of the raw data721

is provided in Appendix F (upper panel). The e�ect of pitch value over time722

is illustrated in the model plots for the baseline (low-variance) condition (left723

panel of Figure 5). The distance of fixations from the target picture is plotted724

on the z-axis, represented by colour codes. Higher values (shown in yellow)725

indicate a relatively greater distance from the target; lower values (shown726

in blue) indicate a relatively shorter distance. Category means are at -2.5727

(for the mid-tone stimuli, e.g. gon3) and 2.5 (for the high-tone stimuli, e.g.728

gon1).729

The plot shows a very similar pattern to the results for the VOT model.730

Changes in eye movements over the course of the trial occur di�erently for731

di�erent pitch values. Until around 200 ms, the plot shows a flat distribution,732

as participants are looking at the fixation cross. Then the eyes begin to move733

away from the fixation cross. After about 400 ms, target distance starts to734

decrease steadily.735

As in the VOT model, di�erences between pitch values begin to emerge736

around 400-500 ms after presentation of the auditory stimulus. In addition,737

the target distance remains greater at the central values, compared to the738

outer values, for the rest of the trial.739

However, there are also di�erences compared to the VOT model. The740

plot for the pitch model is not entirely symmetrical. The greatest distances741

from the target are actually centred just above 0, at about 0.5, rather than at742

0, as expected. This suggests that the category boundary in the stimuli may743

have been slightly lower than participants’ own category boundary estimates.744

7.1.3. E�ects of distribution condition on target distance745

Unlike the VOT models of target distance, in which there was no e�ect of746

condition, the interaction of pitch by condition over time significantly con-747
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Figure 5: Topographical maps for the pitch models in Experiment 2. Top row: model fit
for the best fit model of Euclidean distance from the target picture for the low-variance
(left panel) and high-variance conditions (right panel). The predictor Target Position is
‘top left’ in this plot (see the left panel of Figure 6 for the e�ects of Target Position).
Bottom row: model fit for the best fit model of Euclidean distance from the competitor
picture for the low-variance (left panel) and high-variance conditions (right panel). The
predictor Competitor Position is ‘top left’ in these plots (see the right panel of Figure 6
for the e�ects of Competitor Position). All plots: Estimated e�ects are in pixels. Time
(ms) is represented on the x-axis. Pitch is on the y-axis. Pitch is centred around 0, the
category boundary. The negative pitch values correspond to mid-tone stimuli (e.g. jin3),
the positive values to high-tone stimuli (e.g. jin1). Category means are at centred pitch
values -2.5 and 2.5, respectively. Distance is plotted on the z-axis, represented by colour
codes. Higher values (yellow areas) indicate a relatively greater distance; lower values
(blue areas) indicate a relatively smaller distance. The key in the bottom left corner
shows corresponding pixel values and the z-limits. Note that the range di�ers between the
surface plots for target and competitor model plots: 100-310 for the target plots; 200-410
for the competitor plots. (The scale is the same). Random e�ects are excluded from these
plots.
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tributed to model fit in the pitch models for target distance (‰2(5.0)=41.812,748

p < .001). In the upper panel of Figure 5, di�erences in the distance from749

the target appear between the low-variance condition (upper left panel) and750

the high-variance condition (upper right panel). The di�erences are most751

apparent at the central pitch values, beginning at around 700 ms. There is752

greater distance from the target in the low-variance compared to the high-753

variance condition. This result was counter to our expectations. Based on754

the results of Clayards et al. (2008), we hypothesised greater distance in755

the high-variance condition. A possible reason for this e�ect may be that756

the stimulus category boundaries di�ered from participants’ initial category757

boundary estimates, as noted above. In the high-variance condition, because758

participants had more experience with these central values, this may have759

given them the opportunity to adjust their category boundaries and bring760

them in line with the distribution. Unlike in the VOT models, there are761

also di�erences at the category means. Fixations are further from the target762

for the high tone (positive pitch values) and closer to the target for the mid763

tone (negative pitch values) in the low-variance condition, compared to the764

high-variance condition.765

7.1.4. E�ects of target position on target distance766

The e�ects of target location in the pitch model are very similar to those767

seen in the VOT models. The model summary shows a significant e�ect of768

target position on target distance over time (top-left: F(3.974, 507685.1)769

= 261.29; top-right: F(2.847, 507685.1) = 260.67; bottom-left: F(1.156,770

507685.1) = 676.26; bottom-right: F(3.979, 507685.1) = 273.96). The e�ects771

are shown in the left panel of Figure 6. Fixations are closest to the target772

when the target occurs in the top left corner of the screen, and furthest when773

the target is located in the bottom right of the screen.774

7.2. Competitor distance model: distance of fixations from the competitor775

picture776

As with the VOT models, we were interested not only in the target fixa-777

tions, but also in how much fixations were drawn to the competitor during778

tone perception. The model summary for competitor distance is shown in779

Appendix D. A visualisation of the raw data for competitor distance in780

Experiment 2 is shown in Appendix F (lower panel).781
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Figure 6: Model fit for the the e�ect of target position in the best fit model for Euclidean
distance from the target (left panel) and the e�ect of competitor position on the distance
from the competitor (right panel) in Experiment 2. Time is on the x-axis. Distance
from the target (left panel) or competitor (right panel) is on the y-axis. Each position
on the screen is represented by a line, colour-coded according to the legend in the top
right corner. The predictor Condition is set to low-variance; pitch is set to -0.5. As the
models did not include an interaction between target/competitor position and pitch or
target/competitor position and condition, the estimated e�ects of position are the same
for low and high variance and for the di�erent pitch values. Error bars are 95% confidence
intervals (indicating the uncertainty around the model estimates).

7.2.1. E�ect of pitch value on competitor distance782

The model for competitor distance included a nonlinear interaction of783

pitch by condition over time. The e�ects of pitch over time are shown in the784

baseline (low-variance) condition (lower left panel of Figure 5). In the early785

fixations, seems to be asymmetrical. As expected, fixations are closer to the786

competitor at the central values. But they are also closer to the competitor787

at the very high pitch values. This e�ect of the peripheral pitch values is788

smaller in the mid tones, so that there is an overall bias towards the mid789

tone. This e�ect appears around 200-400 ms. From around 600 ms, there790

is a steady increase in the competitor distance at the outer pitch values;791

however, the competitor distance remains shorter the closer the pitch is to792

pitch values just above the category boundary, at centred pitch values 0.5-1.793

We see the same asymmetry that appeared in the target distance models.794

7.2.2. E�ects of distribution condition on competitor distance795

In the model for competitor distance, the interaction between condition796

and pitch over time significantly contributed to model fit, compared to a797

model without condition (‰2(5.0)=69.970, p < .001). The e�ect of distri-798
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bution condition is shown in the model plots (lower panels of Figure 5).799

As noted above, in the low-variance condition, the e�ect of pitch cue value800

emerges from around 200-400 ms. Fixations move towards the competitor801

early in the first fixations near the category boundary. These fixations oc-802

cur earlier in the low-variance condition (left panel), compared to the high-803

variance condition (right panel). Additionally, at the central values, the804

competitor distance is smaller in the low-variance condition, compared to805

the high-variance condition in this period. The competitor distance remains806

shorter in the low-variance condition right up until near the end of the trial.807

7.2.3. E�ect of competitor location on competitor distance808

The model summary for competitor distance shows a significant e�ect809

of competitor position over time (top-left: F(3.967, 507729.8) = 127.84;810

top-right: F(3.700, 507729.8) = 105.73; bottom-left: F(3.799, 507729.8) =811

130.65; bottom-right: F(3.808, 507729.8) = 111.86). This result follows a812

very similar pattern to the VOT models of competitor distance, and roughly813

the inverse of the e�ect of target position on target distance. As shown in814

the right panel of Figure 6, the competitor distance is greatest when the815

competitor is in the top left corner, and smallest when it is in the bottom816

right corner.817

7.3. Discussion818

Like Experiment 1, Experiment 2 investigated the e�ects of perceptual819

uncertainty on eye movements towards target and competitor pictures dur-820

ing Cantonese speech perception. While Experiment 1 investigated a tem-821

poral cue, voice onset time, in a segmental contrast, aspiration, Experiment822

2 investigated a suprasegmental cue, pitch (f0), in a lexical tone contrast.823

The same two types of uncertainty e�ects were investigated: di�erences in824

the acoustic cue value, in this case pitch, and di�erences in the amount825

of acoustic cue variance (low-variance versus high-variance). As in Experi-826

ment 1, greater perceptual uncertainty was expected as cues approached the827

category boundary, compared to more peripheral pitch values, and in the828

high-variance compared to the low-variance condition. Perceptual certainty829

was investigated in two separate models. The first examined the distance830

from the centre of the target picture; and the second, the distance from the831

centre of the competitor picture.832
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7.3.1. E�ects of time833

The overall trend of fixations over time in the GAMM models for Ex-834

periment 2 was remarkably similar to Experiment 1. Generally, fixations835

became closer to the target and further from the competitor over time, but836

this followed an initial small decrease in distance from the competitor in the837

early period. The eyes initially moved towards the competitor in the first838

fixations of the trial, before steadily moving away from it.839

7.3.2. E�ects of pitch value840

The e�ect of time was modulated by pitch value. At the outer pitch841

values, fixations began to rapidly converge on the target picture by around842

500-600 ms, and by around 700-800 ms, fixations were within the target843

picture interest area, on average. However, as the pitch values approached844

values just above the category boundary, the distance from the target gradu-845

ally increased. At the values 0.5-1, fixations were substantially further from846

the target compared to the outer values. This pattern of increased target dis-847

tance suggests that participants’ category boundaries were centred around848

the values 0.5-1, rather than 0.849

While the bulk of the pitch value e�ect occurs as values approach these850

values just above the category boundary, there is also an interesting e�ect851

towards the periphery of the mid tone, which appears in the lower half of852

the plot, in the later part of the trial. There is a peak where fixations are853

closest to the target that emerges between 800-1200 ms and which occurs854

at the distribution peak for the mid tone (pitch -2.5). Fixations are closest855

to the target at the distribution peak, and become few towards the edge of856

the distribution. This di�ers from the positive pitch values, as well as the857

VOT models. The fact that this e�ect appears in the tone models, but not in858

the VOT models may reflect language-specific properties of the phonological859

system. The consonant system in Cantonese has only two levels of aspiration:860

aspirated and unaspirated. However, in the tonal system there are three level861

tones. This experiment investigated only the high and mid level tones, but862

there is also a low level tone. Although it does not occur in this experiment,863

this low tone seems to be having an a�ect. As the outer regions of the864

mid tone begin to slip into low tone territory, the distance from the target865

increases slightly, suggesting that activation of this low tone may be creating866

an additional cause of uncertainty.867

The presence of the low tone at the lower boundary of the mid tone seems868

to have had an additional e�ect. Towards the end of the trial, an asymmetry869
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emerges in the target distance. The pattern of fixations suggests that the870

participants’ category boundaries are approximately half a continuum step871

higher than the experimental boundary. This may be due to the pressure of872

the low tone. This is supported by evidence from production data showing873

that there is less variation in the pitch height of the mid tone (Siddins and874

Harrington, 2015), presumably due to pressure from the surrounding tones.875

The e�ect does not occur in the high tone, which has no tone above it.876

7.3.3. E�ects of acoustic cue variance877

In Experiment 2, there was a significant interaction between distribution878

condition and pitch over time in both the target distance and the competitor879

distance models. In the target distance model, the e�ect of distribution880

condition was greatest near the category boundary, and emerged around 700881

ms. There was also a similar e�ect at the category boundary in the early882

fixations, around 200-400 ms. Contrary to expectations, at the central values,883

the distance from the target was greater in the low-variance condition than884

the high-variance condition. A similar e�ect was found in the competitor885

distance models, where distance was shorter in the low-variance condition.886

Based on the results of Clayards et al. (2008), we predicted greater competitor887

distance in the low-variance condition.888

This result is probably due to a mismatch between the experimental dis-889

tribution and participants’ initial category boundaries, as noted above. The890

VOT models suggest that low-variance input leads to clearer, more certain891

perception. However, in the pitch experiment, the experimental category892

boundaries appear to be slightly lower than participants’ initial estimated893

boundaries. This leads to quite di�erent e�ects of the distribution. When894

participants encounter an input distribution that does not match their ex-895

pectations, this leads to greater uncertainty in the low-variance condition.896

E�ects of cue variance also emerged at the category means. In both897

groups, there seemed to be a bias toward the mid tone (negative centred898

pitch values): fixations were more likely to be closer to the target and further899

from the competitor for the positive pitch stimuli than the negative pitch900

stimuli. This e�ect was stronger in the low-variance condition. The pattern901

lends further support to the idea that the low-variance condition leads to less902

flexible representations.903
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8. General Discussion904

The present study investigated the temporal dynamics of perceptual un-905

certainty during Cantonese speech perception. Participants saw pictures of906

word pairs consisting of aspirated and unaspirated counterparts (Experiment907

1) or mid and high tone counterparts (Experiment 2) and heard an auditory908

stimulus sampled from acoustic cue continua corresponding to the word pairs.909

Two experimental manipulations were expected to a�ect participants’ level910

of perceptual uncertainty. The first manipulation was the acoustic cue value;911

i.e. the location of the cue along the acoustic continuum between speech912

sounds. The second manipulation was the degree of within-category acoustic913

variance. Participants heard either a relatively large amount of variation (the914

high-variance distribution condition) or relatively little variation in acoustic915

stimuli (the low-variance distribution condition). Eye movements to the pic-916

tures were monitored until participants selected a picture by clicking on it.917

For each experiment, two sets of models were run. The first examined the918

distance of fixations from the target picture, and the second examined the919

distance from the competitor picture.920

We expected to see gradient e�ects in the distance of fixations from the921

target and competitor pictures, depending on the location of the cue along922

the continuum, with fixations landing further from the target as the cue923

approached the category boundary (McMurray et al., 2009). We also ex-924

pected that fixations would be further from the target in the high-variance,925

compared to the low-variance condition (Clayards et al., 2008). One of the926

most interesting aspects of the study was the investigation of the time course927

of e�ects. Given that the time course of statistical distribution e�ects has928

not previously been investigated, the temporal aspects of the present study929

were largely exploratory. The time course of other e�ects during speech per-930

ception have been investigated using a similar experimental methods. For931

example, Mitterer and Reinisch (2013) investigated the time course of e�ects932

in lexically-guided adaptation. They found e�ects in the first fixations of the933

trial. Eye movements were a�ected by the fricative type on a particular trial934

(s-final versus f-final) as well as training condition (f-biased versus s-biased).935

Both e�ects emerged in roughly the same time window. They interpreted936

this e�ect as evidence that lexically-guided adaptation a�ects the very early937

perceptual processes rather than higher-order decision processes.938
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8.1. E�ect of time939

Analysis of eye movement data using Generalised Additive Mixed Mod-940

elling (GAMM) revealed that the distance of fixations both from the target941

picture and from the competitor picture in Experiment 1 followed a nonlinear942

trajectory over time. Overall, the eyes tended to move towards the target943

and away from the competitor over time. However, this pattern was not944

constant over the whole trial. Up until around 200 ms after presentation of945

the auditory stimulus, the model plots show that target distance remained946

steadily around 280 pixels, as the eyes focused on the fixation cross. At947

around 200 ms, the eyes began to move away from the fixation cross. In the948

early part of the trial, between 200 ms and 400 ms, there was an initial small949

decrease in distance from the competitor, indicating that fixations initially950

moved towards the competitor in this period, before steadily moving away951

from it. This suggests that if participants fixate the competitor picture, the952

most likely point in time that they will do so is in the first fixations of the953

trial. Finally, from around 400 ms onwards, the distance of fixations from the954

target steadily decreased and distance from the competitor increased until955

the end of the trial. The time course of e�ects in Experiment 2 was essentially956

the same as Experiment 1. Fixations initially remained on the fixation cross,957

then shifted briefly towards the competitor before moving steadily towards958

the target picture for the remainder of the trial.959

8.2. E�ects of acoustic cue value960

Models for both target distance and competitor distance showed that961

the acoustic cue value had a nonlinear e�ect on participants’ perceptual cer-962

tainty. The distance of fixations from the target and competitor over the963

course of the trial varied as a function of VOT value (Experiment 1) or pitch964

(Experiment 2). As predicted, in the VOT experiment, the target distance965

increased as VOT values approached the category boundary. This is consist-966

ent with the results of earlier studies that have found gradient e�ects of VOT967

value in discrimination of stop contrasts (e.g. McMurray et al., 2008a, 2002).968

Conversely, in the competitor distance models, the distance from the com-969

petitor was smaller at the central VOT values, compared to the outer values,970

providing further support for the conclusion that uncertainty increased as cue971

values approached the category boundary. The same nonlinear e�ect of cue972

value was also found in Experiment 2, with target distance increasing and973

competitor distance decreasing as the pitch value approached what seemed974

to be participants’ initial category boundary, just above the boundary set975
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in the experiment. This shows that the same kind of gradient sensitivity976

that has been shown in VOT perception also applies to perception of pitch977

height during tone perception. Although gradient sensitivity to pitch height978

in Cantonese has been investigated in o�ine identification and discrimination979

tasks (e.g. Francis, Ciocca, and Ng, 2003), as far as we are aware this is the980

first investigation of native Cantonese tone perception using eye movement981

data, which provides a measure of participants’ uncertainty over and above982

their final category judgment. The results additionally demonstrate that this983

is a nonlinear e�ect.984

As for the time course of the cue value e�ects on target distance, changes985

in eye movements over time occurred di�erently at di�erent points on the986

VOT/pitch continuum. Di�erences between VOT values in Experiment 1987

began to emerge around 400-500 ms after stimulus presentation. This was988

consistent with a previous study that examined proportions of fixations on989

the target picture object during English voiced-voiceless stop discrimination990

(McMurray et al., 2009). At the outer regions of the VOT continuum, after991

a period of relative stability, fixations began to rapidly approach the target992

picture from around 500 ms. The eyes generally reached the target picture993

interest area by about 700-800 ms, on average. However, at the central VOT994

values, a substantial amount of uncertainty remained throughout the trial.995

The distance from the target remained considerably greater near the category996

boundary than at the outer VOTs right until the end of the trial.997

There were some intriguing di�erences in the time course between the998

target distance and competitor distance models. Specifically, the competitor999

distance e�ects emerged earlier in the trial, compared to the target distance1000

e�ects. In the competitor distance models, the e�ect of VOT starts to emerge1001

around 150 ms to 300 ms after stimulus presentation, compared to around1002

500 ms in the target distance models. The competitor distance decreases for1003

the outer VOT values earlier than for the central VOT values. This suggests1004

that when the VOT is near the category boundary, it takes participants1005

longer to move their eyes away from the fixation cross for the first fixation1006

of the trial. The early e�ects in the competitor models are probably due to1007

participants fixating the competitor mostly in the first fixation or two, after1008

which time they reject it in favour of the target. It is interesting that even1009

in these very early ‘error’ fixations, the acoustic cue value a�ects the speed1010

with which the eyes move towards the competitor.1011

The overall pattern of e�ects in Experiment 2 was very similar to Ex-1012

periment 1. However, the pattern was shifted upwards. While the largest1013
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e�ect of VOT in Experiment 1 occurs near the category boundary, centred1014

pitch 0, the largest e�ect of pitch value in Experiment 2 centres around 0.5-1015

1, rather than 0. This suggests that participants’ category boundaries were1016

higher than those specified in the stimulus distributions. In addition, in Ex-1017

periment 2, the e�ect of pitch value on target distance emerged earlier than1018

the VOT e�ect in Experiment 1, in the first fixations of the trial. There is1019

also another interesting di�erence between the VOT and pitch cue e�ects.1020

There appears to be little e�ect of cue value at the edges of the VOT cue1021

continuum or in the positive pitch values (i.e. the high tone). However, in1022

the lower half of the plot for pitch (Figure 5), distance from the target starts1023

to increase again at the edge of the continuum. This is probably due to an1024

influence of the low level tone. While the present experiment investigated1025

only the high and mid level tones, Cantonese also has a third level tone, the1026

low tone. The pitch height of the low and mid tones is closer together than1027

the pitch of the mid and high tones. It is likely that at the lower edge of our1028

continuum, participants began to have activation from this low tone, adding1029

another source of uncertainty to the eye movements. Indeed, acoustic studies1030

of production data show that the variance in the mid tone is much less than1031

either the high or low tones (Siddins and Harrington, 2015), probably as a1032

result of pressure from the surrounding low and high tones. This also seems1033

to have had a knock-on e�ect on the perception of the category boundary in1034

the present experiment. There is an asymmetry in the fixation distance in1035

the later part of the trial. Participant category boundaries seem to be shifted1036

up by half a step relative to the stimuli category boundary. Since there is no1037

tone higher than the high tone, this crowding e�ect is absent at the top edge1038

of the continuum. And since there are only two levels of aspiration (aspirated1039

and unaspirated) in Cantonese consonants, the e�ect is absent in the VOT1040

models also.1041

8.3. E�ects of distribution condition1042

A very interesting pattern of e�ects emerged for distribution condition.1043

Based on the results of Clayards et al. (2008), we hypothesised that the fix-1044

ations would fall further from the target and closer to the competitor in the1045

high-variance, compared to the low-variance condition. In Experiment 1,1046

the e�ect of distribution was not significant in the target distance models.1047

However, the competitor distance models showed a significant nonlinear in-1048

teraction between condition and VOT over time. The finding of an e�ect of1049

cue variance replicated the findings of Clayards et al. (2008), but with a con-1050
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tinuous measure of competitor distance rather than fixation proportions. In a1051

visual world eyetracking experiment, Clayards et al. (2008) presented native1052

English listeners with a 12-step VOT continuum and pictures of English /b/1053

and /p/ words, presented in either a high- or a low-variance condition. Their1054

results showed that categorisation accuracy and the proportion of fixations1055

on the competitor depended on the degree of variance. The same overall1056

pattern of results that Clayards et al. (2008) found in English voiced and1057

voiceless stops was found in the present study in Cantonese words beginning1058

with aspirated and unaspirated stops and aspirated and unaspirated a�ric-1059

ates (Experiment 1). This finding lends further support to the idea that1060

listeners are sensitive to the amount of acoustic variance in the signal and1061

that increased variance leads to increased perceptual uncertainty.1062

Clayards et al. (2008) hypothesised that the largest di�erences in looks to1063

the competitor object between the low-variance and high-variance conditions1064

would be at the VOT values closest to the category boundaries. However,1065

due to a smaller number of participants in their experiment and a di�erent1066

method of analysis, the relatively small number of trials at the most central1067

VOT values meant that there was insu�cient power to test this prediction for1068

all VOTs. One of the aims of present experiment was to test this hypothesis1069

by including these central acoustic values in the analysis. With the increased1070

power of GAMMs, along with a larger number of participants, we were able1071

to evaluate the fixations at these VOT values. Clayards and colleagues’1072

predictions were upheld. The greatest di�erences emerged at the central1073

VOT values.1074

Another aim of the present study was to uncover the time course of per-1075

ceptual uncertainty e�ects by analysing changes in eye movement behaviour1076

over the course of the trial. While Clayards et al. (2008) reported between-1077

condition di�erences in the proportion of fixations collapsed over the trial,1078

we were interested in when these di�erences emerged and how they changed1079

over the course of the trial. Using a continuous measure of distance and us-1080

ing GAMMs for analysis enabled us to also investigate the temporal e�ects.1081

E�ects of distribution condition emerged very early, in the first fixations of1082

the trial and increased later in the trial, with maximal e�ects after around1083

500 milliseconds.1084

It is interesting to note the di�erent time course of e�ects that emerged1085

in the present study by examining eye movements to both the target and1086

competitor pictures separately. In previous eye movement studies that have1087

used a VOT continuum to investigate acoustic cue processing, where analysis1088
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has focused on fixations to the target (e.g. McMurray et al., 2009), VOT1089

e�ects emerged around 600 ms. In studies that have included both target1090

and competitor by analysing the proportion of looks to each category, e.g.1091

/b/ vs. /p/ (e.g. McMurray et al., 2008b), the e�ects seem to emerge earlier.1092

In the present study, e�ects of the VOT value emerged in the target distance1093

models around 500-600 ms after stimulus presentation. In the competitor1094

distance models, the cue value e�ect emerged early, with fixations further1095

from the target at the category boundary in the first fixations of the trial,1096

between 150-300 ms.1097

In Experiment 2, unlike in the VOT models, the interaction between1098

condition and pitch over time had a significant e�ect on target distance. As1099

in the VOT models, di�erences between conditions were most obvious at the1100

central pitch values, emerging around 500-600 ms. However, in the pitch1101

models, the competitor distance was greater in the low-variance condition1102

than the high-variance condition. This result was counter to our predictions.1103

Based on the results of Clayards et al. (2008), we had expected to see greater1104

distance from the target in the high-variance condition.1105

We believe that this result may be related to the the asymmetry in the1106

eye movements with respect to the category boundary. It seems that in1107

the pitch experiments the mid point between the two peaks of the distribu-1108

tion was lower than participants’ category boundary estimates. Under these1109

conditions, the fixations were further from the target in the low-variance con-1110

dition. Around the category mean and periphery of the high tone, starting1111

from around 200 ms until late in the trial, fixations were further from the1112

target in the low-variance condition, compared to the high-variance condi-1113

tion. Conversely, around the category mean and periphery of the mid tone1114

fixations were closer to the target in the low-variance condition, compared to1115

the high-variance condition. The e�ect started slightly later in the mid tone,1116

around 400-500 ms. In the low-variance condition, fixations were closer to1117

the target when it was a mid tone (negative pitch values) and further from1118

the target when it was a high tone (positive pitch values). If participants’1119

initial category boundaries were higher than the boundaries set in the exper-1120

iment, they would hear more tokens as mid tone. This e�ect seems to have1121

been stronger in the low-variance condition. This pattern suggests that a1122

low-variance distribution may lead to more robust categories, but that this1123

in turn leads to a trade-o� when tokens deviate from the expected values.1124

Deviations from these expectations are more surprising, and therefore lead1125

to a greater level of uncertainty and di�culty discriminating these tokens.1126
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In addition, di�erences between these two experiments may also be par-1127

tially attributed to acoustic di�erences between stimuli. In general, tones1128

seem to be more susceptible to perceptual error and represented less pre-1129

cisely, compared to consonant contrasts, such as the VOT cue (Cutler and1130

Chen, 1997; Taft and Chen, 1992) and, at least in Mandarin, are more mut-1131

able than either consonants or vowels (Wiener and Turnbull, 2015). In fact,1132

the overall level of perceptual uncertainty seems to have been higher in the1133

tone experiments, compared to the VOT experiments, as indicated by the1134

range of cue values over which target distance was relatively high. In the1135

VOT experiments, the biggest e�ects of VOT occur in the central three to1136

four steps of the continuum, with largely reduced e�ects in the outer values.1137

In the pitch experiments, the e�ects spread over up to five steps of the con-1138

tinuum. This suggests that participants had less precise category boundaries1139

for tones than for the consonants. This may have given a further disadvant-1140

age to participants in the low-variance condition when it came to processing1141

tokens towards the edges of their distribution.1142

One surprising finding of this study was that we did not see learning1143

e�ects over the course of the experiment. That is, the e�ect of trial was1144

not significant. This is interesting from the point of view of the e�ects of1145

acoustic variance conditions. Since the distributional e�ects are expected1146

to occur through a learning process, we expected to find changes in the1147

pattern of eye movements over time, as participants gained experience with1148

the distributions. This was not the case. The e�ect of cue variance was1149

constant throughout the experiment. This points to a more global strategy1150

that participants adopt in response to uncertainty. Namely, to look around1151

more under conditions of increased uncertainty. A strategy such as this can1152

explain the very early e�ects in the competitor models, as well as the lack of1153

trial e�ects.1154

The present results show that for a given acoustic cue, the degree of1155

variance has an immediate e�ect on the degree to which the cue is used for1156

discrimination. The cues used in the present study were contrastive cues1157

in the listeners’ native language. This raises the question of how variance1158

a�ects other acoustic cues present in the speech signal, such as indexical1159

cues. In principal, the way that listeners learn to use and process these1160

two types of cues is presumably a�ected by the same mechanisms. At the1161

beginning of life, infants presumably know little about which types of cues are1162
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contrastive and which cues are indexical.5 But experience of the way in which1163

certain variations in speech covary with speakers, while other variations occur1164

consistently over many speakers provides information from which infants can1165

learn to distinguish between indexical and contrastive cues. Therefore the1166

same mechanism that enables learners to acquire contrastive dimensions may1167

also enable them to lower the weighting cues not relevant to the task at hand.1168

The relationship between these contrastive and non-contrastive cues may1169

be vital to the process of acquiring speech categories. Rost and McMurray1170

(2010) demonstrated a crucial role for indexical cue variation in infant lan-1171

guage acquisition. In a series of experiments in which phonetic cues were1172

varied or held constant, 14-month-olds were able to acquire the voicing con-1173

trast only when indexical speaker cues were varied. Statistical information in1174

VOT values themselves within the same speaker was not su�cient for learn-1175

ing, but variance in non-contrastive indexical dimensions in the multi-speaker1176

condition enabled infants to extract the relative invariance in the contrastive1177

VOT dimension. This is consistent with the assumption in learning models1178

that learning involves not only acquisition of knowledge, but also learning1179

to ignore cues that are not e�ective discriminators (Baayen, Hendrix, and1180

Ramscar, 2013).1181

One question is whether the e�ects of these experiments would generalise1182

to new phonetic environments. For example, during or following exposure to1183

high-variance aspiration or pitch in the present study, would participants also1184

display high-uncertainty behaviour in response to unmanipulated stimuli?1185

The present design did not allow for testing this kind of generalisation, as1186

all stimuli were in the same variance condition and there were no separate1187

training and test phases. That is, the whole experiment was both training1188

and test. However, Idemaru and Holt (2011, 2014) have shown that when1189

listeners were presented with a reliable cue (VOT) and a less reliable cue1190

(f0) in one of two voicing contrasts, beer-pier and deer-tear, listeners lowered1191

their use of the less reliable cue for discrimination between the word pair,1192

but the e�ect did not generalise to the other place of articulation.1193

While the present results investigated individual cues in isolation, real-1194

world speech rarely varies by a single cue. For example, Lisker (1986) identi-1195

5There is evidence that some information about the native language is learned in the
womb, such as recognising the mother’s voice and recognising some prosodic properties
of the native language. However, even if learned before birth, this knowledge comes from
experience with the ambient language.
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fied as many as 16 di�erent cues that a�ect native English listeners’ identific-1196

ation responses to the voiced-voiceless contrast in stops, such as rabid-rapid.1197

Jongman and colleagues (Jongman, Wayland, and Wong, 2000; McMurray1198

and Jongman, 2011) found 20 cues involved in English fricative discrimina-1199

tion. So, the process of raising or lowering the weighting of particular cue1200

values normally occurs in the context of multiple cues. These cues all compete1201

for relevance in relation to the particular goals of the listener. Presumably1202

any detectable cue can potentially contribute to the process of discrimination,1203

and the size of the contribution depends in part on its variance. However,1204

covariance with other cues has also been shown to be an important factor and1205

may even work to counter the e�ects of variance and improve discrimination.1206

For example, both voice onset time and vowel length covary with speaking1207

rate. Toscano and McMurray (2012) found that, rather than normalising for1208

speaking rate, listeners may instead use vowel length in combination with1209

VOT as a cue to the voicing distinction in stops. The combination of the1210

two cues together reduces the uncertainty that would result from variance in1211

the single cue.1212

Cue weighting has been investigated in categorisation of non-linguistic1213

auditory stimuli. Holt and Lotto (2006) presented participants with two1214

categories distinguished by two acoustic dimensions (centre frequency and1215

modulation frequency). In a pre-test, each dimension was tested separately1216

to establish the appropriate step size for the continuum that would achieve1217

an accuracy rate of 70%. However, when cues were combined, participants1218

exhibited a bias towards use of the centre frequency cue for discrimination1219

(Experiment 1). This bias remained even when the between-category acous-1220

tic distance for centre frequency was reduced (Experiment 2). However, when1221

the within-category acoustic variance of modulation frequency was reduced,1222

the relative cue weighting for modulation frequency increased (Experiment1223

3). Idemaru and Holt (2011, 2014) additionally showed that listeners track1224

covariance of acoustic cues and dynamically adjust weighting of cues in re-1225

sponse to changes in cue covariance.1226

Toscano and McMurray (2010) provided a demonstration of how listen-1227

ers can adjust the relative weights of di�erent cues in the signal based on1228

their distributional statistics, using Mixture-of-Gaussians simulations. Im-1229

portantly, when simulations were based on multidimensional distributions,1230

where each cue lay on a separate dimension, the models failed to account for1231

cue integration e�ects. Only when cues were integrated in a cue-weighting1232

updating learning model, did the model reflect the interaction of e�ects from1233
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the two cues found in behavioural data. This suggests that the e�ects do not1234

emerge purely from the statistics alone and that the learning process itself1235

plays an important role.1236

The present results open up several questions for further investigation.1237

This study involved native Cantonese listeners, who, with a lifetime of ex-1238

perience with the language, presumably had well-established categories for1239

the contrasts investigated. We found that the informativity of the input can1240

have immediate e�ects on processing these established categories. An inter-1241

esting question is whether and how the degree of within-category variance1242

a�ects acquisition of new speech categories, either in infant first language1243

learners or in adult second language learners.1244

The present work focused on within-category variance. Another factor1245

that is likely to a�ect speech category acquisition and processing is the acous-1246

tic interval - the acoustic interval between categories. As discussed in the1247

introduction, it has been proposed that certain properties of speech that are1248

particular to speech with infants help them to acquire their native phono-1249

logy. Studies have shown that speech with infants tends to have increased1250

acoustic intervals, compared to speech with adults, at least for some speech1251

contrasts. This kind of distribution has been mimicked, at least in L2 ac-1252

quisition (Escudero et al., 2011; Wanrooij et al., 2013). But infant speech1253

also has increased variance, compared to speech with adults. Further work1254

is needed to tease apart the e�ects of these two properties.1255
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Appendix A. Model summary Distance from Target Experiment 11477

A. parametric coe�cients Estimate Std. Error t-value p-value
(Intercept) 218.1934 2.4675 88.4269 < 0.0001
Condition=high variance 1.8210 3.1827 0.5722 0.5672
Target Position=bottom right 24.5794 1.1176 21.9920 < 0.0001
Target Position=top left -19.5370 1.1153 -17.5176 < 0.0001
Target Position=top right 6.3936 1.0787 5.9272 < 0.0001
B. smooth terms edf Ref.df F-value p-value
s(Time, VOT) 65.7065 67.7241 98.4949 < 0.0001
ti(Time, Target Pos=bottom left) 1.0020 1.0021 895.7533 < 0.0001
ti(Time, Target Pos=bottom right) 3.9897 3.9996 360.9250 < 0.0001
ti(Time, Target Pos=top left) 3.9793 3.9991 321.4577 < 0.0001
ti(Time, Target Pos=top right) 3.9414 3.9965 254.7427 < 0.0001
s(Time, SubjectTarget) 1827.0807 2145.0000 11.2009 < 0.0001

Appendix B. Model summary Distance from Competitor Experi-1478

ment 11479

A. parametric coe�cients Estimate Std. Error t-value p-value
(Intercept) 328.7309 2.3943 137.2987 < 0.0001
Condition=high variance 1.1495 3.2648 0.3521 0.7248
Competitor Position=bottom right 22.3582 1.1010 20.3079 < 0.0001
Competitor Position=top left -24.9015 1.1028 -22.5794 < 0.0001
Competitor Position=top right 5.4476 1.1286 4.8268 < 0.0001
B. smooth terms edf Ref.df F-value p-value
te(Time, VOT, Cond=low variance) 53.4448 60.7526 14.0871 < 0.0001
te(Time, VOT, Cond=high variance) 50.5629 59.2332 55.6577 < 0.0001
ti(Time, Comp Pos=bottom left) 3.7986 3.8286 84.5055 < 0.0001
ti(Time, Comp Pos=bottom right) 3.9394 3.9480 120.1620 < 0.0001
ti(Time, Comp Pos=topleft) 3.9687 3.9731 118.9750 < 0.0001
ti(Time, Comp Pos=top right) 3.7356 3.7714 87.2358 < 0.0001
s(Time, SubjectTarget) 1707.9899 2143.0000 8.8713 < 0.0001
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Appendix C. Model summary Distance from Target Experiment 21480

A. parametric coe�cients Estimate Std. Error t-value p-value
(Intercept) 233.5211 2.7040 86.3600 < 0.0001
Conditionw 0.2531 3.9043 0.0648 0.9483
Target Pos=bottom right 13.1427 1.2193 10.7791 < 0.0001
Target Pos=top left -15.0850 1.2133 -12.4332 < 0.0001
Target Pos=top right -1.2133 1.1551 -1.0504 0.2935
B. smooth terms edf Ref.df F-value p-value
te(Time, pitch, Cond=low variance) 62.0047 66.4747 87.4145 < 0.0001
te(Time, pitch, Cond=high variance) 63.7441 68.0654 81.5326 < 0.0001
ti(Time, Target Pos=bottom left) 1.1556 1.1963 676.2567 < 0.0001
ti(Time, Target Pos=bottom right) 3.9791 3.9969 273.9594 < 0.0001
ti(Time, Target Pos=top left) 3.9738 3.9958 261.2926 < 0.0001
ti(Time, Target Pos=top right) 2.8467 3.3261 260.6682 < 0.0001
s(Time, SubjectTarget) 873.1670 1049.0000 14.9350 < 0.0001

Appendix D. Model summary Distance from Competitor Experi-1481

ment 21482

A. parametric coe�cients Estimate Std. Error t-value p-value
(Intercept) 324.2913 2.4692 131.3371 < 0.0001
Condition=high variance 0.0748 3.4645 0.0216 0.9828
Competitor Position=bottom right 9.5556 1.1813 8.0890 < 0.0001
Competitor Position=top left -23.4422 1.1812 -19.8457 < 0.0001
Competitor Position = top right -1.8628 1.2080 -1.5420 0.1231
B. smooth terms edf Ref.df F-value p-value
te(Time, pitch, Cond=low variance) 50.0866 57.7930 82.9908 < 0.0001
te(Time, pitch, Cond=high variance) 51.9104 60.6567 78.8503 < 0.0001
ti(Time, Comp Pos=bottom left) 3.7987 3.8324 130.6464 < 0.0001
ti(Time, Comp Pos=bottom right) 3.8077 3.8361 111.8629 < 0.0001
ti(Time, Comp Pos=top left) 3.9669 3.9721 127.8361 < 0.0001
ti(Time, Comp Pos=top right) 3.7000 3.7449 105.7310 < 0.0001
s(Time, SubjectTarget) 848.9467 1049.0000 12.6510 < 0.0001
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Appendix E. Raw data Experiment 11483

Raw data for target distance (top row) and competitor distance (bottom row) over time
per VOT value in the low-variance (left panels) and high-variance conditions (right panels)
in Experiment 1. Data was aggregated to 10 Hz (100 ms intervals) for the purposes of
plotting. Time is on the x-axis. Centred VOT value is on the y-axis. Category means are
at VOT -2.5 (for the unaspirated stimuli, e.g. bou2) and 2.5 (for the aspirated stimuli,
e.g. pou2). Distance from the target/competitor is on the z-axis, represented by colour
codes. Higher values (shown in yellow) indicate a relatively greater distance; lower values
(shown in blue) indicate a relatively shorter distance. The key at the bottom left of each
panel shows the corresponding pixel values and z-limits for each model plot. Note that the
height range di�ers between the target and competitor: the target plots range between
80 and 320 pixels, whereas the competitor plots range between 200 and 440 pixels. (The
scale is the same). To assist with interpretation of the topographical plots, an illustration
showing the relation of the topographical plots of to line plots of the same raw data is
provided in Appendix G.
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Appendix F. Raw data Experiment 21484

Raw data for target distance (top row) and competitor distance (bottom row) over time
per pitch value in the low-variance (left panels) and high-variance conditions (right panels)
in Experiment 2. Data was aggregated to 10 Hz (100 ms intervals) for the purposes of
plotting. Time is on the x-axis. Centred pitch value is on the y-axis. Category means are
at pitch -2.5 and 2.5. Distance of fixations from the target/competitor is on the z-axis,
represented by colour codes. Higher values (shown in yellow) indicate a relatively greater
distance; lower values (shown in blue) indicate a relatively shorter distance. The key at
the bottom left of each panel shows the corresponding pixel values and z-limits for each
model plot. Note that the height range di�ers between the target and competitor. (The
scale is the same).
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Appendix G. Illustration of the relation between topographic plots

and line plots.

This illustration is intended to assist with interpretation, particularly for readers who are
unfamilar with topographic plots. The plots show the raw data for Competitor Distance
in Experiment 1. The same data are represented in two ways. In all panels, time is on
the x-axis. In the topographic plots (upper panel), centred VOT value is plotted on the
y-axis. In the line plots (lower panel), in contrast, centred VOT value is represented as
individual, colour-coded lines. For each value of centred VOT, the lines at the right edge of
the topographic plot panels indicate the line colour in the line plot and the corresponding
location on y-axis of the topographic plot. In the topographic plots, distance from the
competitor is plotted on the z-axis, represented by colour codes. Higher values (shown
in yellow) indicate a relatively greater distance; lower values (shown in blue) indicate a
relatively shorter distance. The key at the top left of each panel shows the corresponding
pixel values and z-limits for each model plot. In the line plots, in contrast, distance from
competitor is represented on the y-axis.
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