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Abstract
A fundamental question in speech research is how listen-

ers use continuous (non-discrete) acoustic cues to discriminate
between discrete alternative messages. An important factor
is the statistical distribution of acoustic cues in speech. Pre-
vious research has shown that when native speakers listen to
speech with high within-category variability in the discrimina-
tive cue dimension, perceptual uncertainty increases, resulting
in increased looks to competitor objects. The present study in-
vestigated effects of within-category acoustic variability on eye
movements during acquisition of a non-native acoustic dimen-
sion, namely English speakers acquisition of lexical tone.

All participants heard a bimodal distribution of stimuli,
with distribution peaks at the prototypical pitch values for Can-
tonese high and mid level tones; however, presentation fre-
quency differed between conditions: high-variance vs. low-
variance. Based on previous research, we expected lower un-
certainty and better learning in the low-variance condition.

GAMM models showed that towards the end of the ex-
periment, fixations were closer to the target object in the low-
variance, compared to the high-variance condition. This sug-
gests that within-category acoustic variability not only increases
uncertainty for native listeners, but may also initially hinder
learning of acoustic cues during non-native language acquisi-
tion.
Index Terms: speech perception, statistical learning, second
language acquisition, Cantonese lexical tone, visual world eye-
tracking, generalised additive mixed models (GAMMs)

1. Introduction
The organisation of acoustic cues varies substantially across
languages. Cue dimensions that are lexically contrastive in one
language may not be contrastive in another. Therefore, acquisi-
tion of a new language often involves learning to substantially
adjust cue weights (i.e. to adjust the degree to which various
cues in the signal are utilised, consciously or unconsciously)
for lexical contrasts. In some cases, this can pose significant
challenges. Expert knowledge of statistical regularities in one’s
native language can lead to expectations that hinder non-native
speech perception [1, 2]. Statistical properties that seem to play
a role in shaping cue perception include the number of distri-
bution peaks along a cue dimension [3, 4, 5], acoustic distance
between peaks in a bimodal distribution [6] and within-category
acoustic variance [7, 8, 9].

Many recent studies have emphasised the role of variabil-
ity in shaping and reshaping native and non-native sound sys-
tems. For example, early first language acquisition [10] and sec-
ond language acquisition [11, 12] seem to benefit from multiple
speakers, compared to a single speaker in the training input.
When there are multiple speakers, this increases variability in

non-contrastive indexical dimensions, which seems to have the
effect of highlighting the relative invariance of the contrastive
dimensions. This is consistent with learning models, which
posit that learning not only involves acquisition of knowledge,
but also learning to ignore irrelevant cues [13, 14]. Interest-
ingly, one recent study suggests that exposure to a non-native
discriminative dimension improves not only discrimination be-
tween categories, but also perception of within category acous-
tic information within that dimension [5].

An aspect that has received less attention is variability
within contrastive dimensions. Acoustic studies suggest that
this variability may be an important factor in adjusting cue
weights for discriminating sound contrasts. For example, for
native English speakers, the third formant (F3) is generally the
most reliable cue to the /l/ and /r/ contrast [15]. F3 values clus-
ter around the /l/ and /r/ productions with relatively little spread
or overlap. While there is some difference in the distribution of
the second formant (F2) between /l/ and /r/, it is highly variable,
with a high degree of overlap [16]. This variance means that,
while F2 seems to play a role as a secondary cue, it is not as
reliable as F3 and is not relied on as much by native English lis-
teners. In addition, in recordings of native Japanese productions
of English /l/ and /r/ [16], the F3 values are highly variable and
largely overlapping for /l/ and /r/ productions. This increased
variance and category overlap corresponds to reduced effective-
ness of the cue for discriminating between the /l/ and /r/ tokens
produced by these speakers.

Nixon and colleagues [8] investigated the temporal dynam-
ics of perceptual uncertainty during native speech perception
using the‘visual world’ eyetracking paradigm. In this paradigm,
participants see four pictures on the screen, hear a word and are
instructed to click on the picture corresponding to the word. Ef-
fects emerged very early, in the first fixations of the trial. As
variability increased and speech cues became less reliable, lis-
teners looked around more, presumably in search of further sup-
port for partially activated candidates. The idea that listeners
were seeking additional evidence in the high-variability con-
dition seems to suggest the appropriate conditions for adjust-
ing cue weights, and perhaps increasing weights of previously
downweighted cues.

What is not yet known is whether such within-category
acoustic variance also affects acquisition of a new acoustic di-
mension in a non-native language. The present study addressed
this question by examining the effect of within-category acous-
tic variance on eye movements during native English speakers’
acquisition of a pitch cue (fundamental frequency; f0) in a Can-
tonese lexical tone contrast. English does not use f0 as a lexi-
cal contrast, and tone can be notoriously difficult for beginning
learners of non-tonal languages [17]. Based on previous studies
[7, 8, 9], we expected greater weighting of the pitch cue over
the course of the experiment - that is, better learning - in the



low-variance, compared to the high-variance condition.

2. Method
2.1. Participants

Thirty-seven native English-speaking students from the Univer-
sity of Western Sydney who had not previously studied any
tone language were recruited for the experiment for course
credit1. Participants were tested individually in a sound-
attenuated booth.

2.2. Experiment design and stimuli

Visual stimuli were black-on-white line drawings of eight com-
mon objects. Auditory stimuli were four minimal pairs of
single-character mid- and high-tone words (e.g. gun mid ‘can’
and gun high ‘crown’). All auditory stimuli were produced by
a male native speaker of Hong Kong Cantonese. Stimuli were
then resynthesised into a 14-step pitch continuum (e.g. gun mid
to gun high) using PRAAT [18]. One half of the continuum cor-
responded to the mid tone and one half to the high tone.

The number of times participants heard each token of the
continuum followed a bimodal distribution, with the two peaks
of the distribution corresponding to the prototypical f0 for the
mid- and high-tone stimuli, respectively. All participants heard
the same number of tokens; but the number of times they heard
each token differed between conditions, with greater spread
from the mean (statistical variance) in the high-variance versus
the low-variance distribution (see Figure 1). The experiment
consisted of 240 experimental trials, divided into six blocks of
40 trials, with breaks between the blocks. The order of presen-
tation was pseudo-randomised for each participant.

2.3. Procedure

Participants sat 60 cm from a computer screen equipped with
an SR Research Eyelink 1000 remote eyetracker with a chinrest
and headrest. Stimulus presentation and data acquisition were
conducted using SR Research Experiment Builder with a sam-
pling rate of 1000 Hz. The session began with ten practice trials.
None of the images or auditory stimuli from the experimental
block appeared in the practice block. Each experimental trial
began with a brief (1000 ms) presentation of four pictures, one
in each quadrant of the screen. The purpose of the preview was
to reduce noise in the data by reducing the time and likelihood
of participants scanning the images at the beginning of the trial.
The display always contained a target, a competitor and two dis-
tractor items. The target and competitor had the same segmen-
tal syllable, but differed in tone. The location of each picture
condition on the screen and their location relative to each other
were randomised to avoid strategic effects. The preview disap-
peared, followed by a gaze-contingent fixation cross to ensure
participants were fixating the centre of the screen at the begin-
ning of the critical trial period. The pictures then reappeared
simultaneously with presentation of the auditory stimulus. Par-
ticipants were instructed to select the picture corresponding to
the word they heard by clicking on it with the mouse, and to
guess if they did not know. They were given feedback (‘cor-
rect’/‘wrong’) after each trial. Participants were told that this
was a language-learning task, but were not informed about the

1Participants were not explicitly asked whether they had studied a
tone language, as this might influence the experiment results. Instead,
they were asked to list all languages they spoke or had studied, and were
screened if they did not meet this criterion.
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Figure 1: Illustration of the presentation frequency distributions
in the high-variance (black lines) and low-variance conditions
(blue lines).

pitch or tone manipulation or the target language.

3. Analysis
Eye movement data were analysed using Generalised Additive
Mixed Models [19, 20, GAMM] using the mgcv package (ver-
sion 1.8.17) in R [21, version 3.4.0]. Generalised Additive
Models (GAMs) are a type of Generalised Linear Model that
use smooth functions to model nonlinear effects of continuous
predictors. The ‘mixed’ in GAMMs refers to the inclusion of
random effects in addition to fixed effects.

GAMM is a well-established method of analysis that is in-
creasingly being used in the cognitive and language sciences
[22, 23, 24, 25], articulography [26, 27], acoustic analysis [28],
temporal clustering of sociolinguistic variants [29] and dialec-
tology [30]. Recently, it has also been applied to visual world
paradigm eye movement data [8, 9, 31] and pupilometry [32].

GAMMs are a valuable method for analysing visual world
fixation data for several reasons, including their ability to cap-
ture nonlinear changes in eye movements over the course of the
trial and/or over the course of the experiment, the inclusion of
random effects to deal with taking repeated measures from the
same participants and items, and methods for dealing with auto-
correlation [8]. An important aspect of eyetracking data is how
fixations change over time. In experimental data sets, and espe-
cially time series data, autocorrelation can occur between data
points [33]. In the mgcv package, functions have been imple-
mented to deal with autocorrelation in GAM models.

Eye movement data were modelled as a continuous predic-
tor of Euclidean distance of fixations from the centre of the
target image. Because this gradient measure of distance in-
cludes data points that have not reached the target image or
fall between images, it is more likely to pick up on uncertainty
effects, such as undershooting, hesitant or inaccurate oculo-
motor movements due to low activation or competing activa-
tions, compared to a categorical measure of within or outside
the interest area [8]. All predictors of interest were entered into
the initial model, and predictors that did not contribute to model
fit were removed. Model comparison was conducted by means
of χ2 tests of fREML scores, using the compareML function in
the itsadug package [34, version 2.2] in R. Because we were



interested in the time course of fixations over the course of the
trial, a continuous predictor of time was included. Data were
downsampled to 50 Hz to reduce autocorrelation between data
points. A 3200 ms window was selected for analysis, from 200
ms prior to to 3000 ms after auditory stimulus presentation. To
test whether there was a learning effect over the course of the
experiment, the model included a continuous predictor of trial,
centred around 0 (centred trial). To determine whether partici-
pants were using pitch as a cue to distinguish between target and
competitor images, the model included a continuous predictor
of pitch, also centred around zero (centred pitch). The centred
values ranged from -5.5 to 5.5, with the distribution peaks at
-3 and 3. Distribution variance was modelled as a two-level
factor, low-variance and high-variance. Previous research with
the visual world paradigm has shown that the location of the
target object on the screen significantly affects eye movement
behaviour [35, 8]. Therefore, a smooth for target position over
time was included as a control variable, a factor with four lev-
els: top-left, top- right, bottom-left and bottom-right. A random
smooth for subject by item over time was included to account
for differences in individual participants and items.

The initial model included intercepts for the two factor vari-
ables, variance condition and target position, and smooths (for
each of the main effects) and nonlinear regression lines2 (for
each two- and three-way interaction) for each level of condition.
A smooth was also included for each level of target position.
Random effects were modelled with shrunk factor smooths. Af-
ter running the model, the model residuals were examined to
check for autocorrelation. An AR(1)3 model was included to
account for autocorrelation in the residuals.

4. Results
Model comparisons showed that model fit was improved by in-
cluding smooths for centred trial by condition (p <.001); target
position over time (p<.001); and nonlinear regression smooths
for time by trial (p<.01); trial by pitch by condition (p<.001);
time by pitch by condition (p<.01); trial by time by pitch
(p<.001); and trial by time by pitch by condition (p<.001).

The difference between the high- and low-variance condi-
tions over the course of the experiment is shown in Figure 2.
Where the line is above zero, the eyes were closer to the target in
the low-variance condition than in the high-variance condition.
The vertical dotted red lines indicate areas of significant differ-
ence between conditions. The effect emerged later (2800ms)
and more distally for the high tone (positive centred pitch val-
ues 4.5 and 3.5) than the low tone (2400ms; negative centred
pitch values -3.5, -2.5, -1.5). At the beginning of the experi-
ment, the distance from the target is greater in the low-variance
condition than the high-variance condition for some pitch val-
ues. However, as the experiment progresses, the distance gets
smaller, and the distance from the target becomes significantly
smaller in the low-variance condition. This effect emerges late
for the high tone and just after halfway through for the mid tone.

The summed effects are shown in Figure 3. The figure
shows a topographic plot of the Euclidean distance of fixations
from the target object in the low-variance (left panels) and high-
variance conditions (right panels). Time (ms) is on the horizon-
tal axis. Centred pitch is on the vertical axis: positive pitch val-

2The partial effects tensors are modelled with the ti() function in the
mgcv package.

3For data points in a series (in this case trials), the AR(1) is a mea-
sure of the current error as a proportion of the preceding error (plus
Gaussian noise).

ues correspond to the high tone and negative values to the mid
tone. Distance from the target (in pixels) is on the z-axis and
is colour-coded. Higher values (warmer colours) indicate fixa-
tions were further from the target image; lower values (cooler
colours) indicate fixations were closer to the target image. The
key in the top right corner indicates the corresponding values
and z-limits. The panel rows show snapshots of trials through-
out the experiment.
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Figure 2: Smooth of the difference between the high-variance
and low-variance conditions over the course of the experiment
for high tone (top 4 panels) and mid tone (bottom 4 panels).
Vertical dotted lines indicate significant difference. Trial is on
the x-axis and is centred around 0. The difference (in pixels)
between conditions (high minus low) is on the y-axis. Time is
set to the peak of the effect for high (2800 ms) and mid tones
(2400ms). Random effects are removed from these plots.

At the beginning of the experiment, fixations are further
from the target in the low-variance condition, compared to the
high-variance condition. This effect lessens over the following
trials, and has disappeared by trial 100. For the remainder of
the experiment, fixations become gradually closer to the target
in the low-variance condition. This becomes significant ear-
lier in the low pitch values, as seen in trial 170. Over time,
fixations become significantly closer to the target in the low-



variance condition for both the low and high pitch values.
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Figure 3: Topographic maps of the model estimates for Eu-
clidean distance from the target object in the low-variance (left
panels) and high-variance conditions (right panels). Time (ms)
is represented on the x-axis. Pitch is on the y-axis. Pitch is
centred around 0, the category boundary. Positive values cor-
respond the the high tone, negative values to the mid tone. Dis-
tribution peaks were at 3 and -3. Distance of fixations from the
target object is plotted on the z-axis and is colour coded. Higher
values (warmer colours) indicate greater distance; lower val-
ues (cooler colours) indicate a smaller distance. The key in the
top-left corner shows the corresponding distance (in pixels) and
z-limits. Random effects are excluded from this plot.

5. Discussion
The present study investigated the effects of within-category
acoustic variance on non-native acquisition of a new acoustic
cue dimension, that is, pitch (f0) in a lexical tone contrast. Par-
ticipants saw pictures of common objects and heard minimal
word pairs, differing only in lexical tone. The tones were based
on two Cantonese level tones, which are distinguished by pitch
height. Auditory stimuli were sampled from pitch continua cor-
responding to the words. Stimuli were sampled according to a
bimodal distribution. The critical manipulation was the statisti-
cal variance of the distribution, i.e. the amount of acoustic vari-
ability within the critical contrastive dimension, pitch. Partici-

pants heard either a high- or a low-variance distribution. Based
on literature investigating effects of variance in native speech
processing [7, 8], we predicted that acquisition of the pitch cue
would be better in the low-variance condition. GAMM models
of eye movements showed that the Euclidean distance between
fixations and the centre of the target picture reduced over the
course of the experiment in both conditions. In addition, by the
end of the experiment, distance was lower in the low-variance
condition, compared to the high-variance condition. Interest-
ingly, the effect seemed to emerge earlier in the mid tone than
the high tone, in terms of both the time point in the trial and
the trial in the experiment. This suggests the participants begin
to associate the mid tone with its target picture more quickly,
perhaps because it is closer to the English prosodic range.

The present results provide new evidence that within-
category acoustic variance shapes nonnative acoustic cue ac-
quisition. Previous studies have shown that acoustic variance
affects native speech perception, with increased variance lead-
ing to increased perceptual uncertainty [7, 8]. The present study
shows that the same mechanism can also help shape acquisition
of a new acoustic dimension not present as a lexical contrast in
the native language.

Cue variance has been investigated previously in native
Japanese listeners’ learning of the English /l/-/r/ contrast [36].
Many native Japanese listeners have trouble attending to the
third formant (F3) cue - which native English listeners tend to
use to distinguish /l/ and /r/ - and rely instead on the less reli-
able second formant (F2). Using video game training over sev-
eral days, Lim and Holt found that by presenting stimuli with
high variability in the F2 dimension and low variability in the
F3 dimension, participants’ cue weighting shifted towards F3
and categorisation accuracy significantly increased. While this
innovative study demonstrates the potential of variability to ad-
just cue weighting, it differs from the present study in several
respects. Firstly, the present study directly compared effects
of high- vs. low-variance; the Lim and Holt study compared
effects of training to a control condition that did not involve En-
glish exposure. Secondly, participants in the Lim and Holt study
were proficient English speakers. They had been studying En-
glish for at least 12 years and had lived in an English-speaking
environment for up to 2.5 years. The present study investigated
acquisition of a new cue dimension, not encountered before in
a lexical contrast. Rather than improving an already partially
acquired contrast, participants in the present study were experi-
encing both the language and the tonal contrast for the first time.
Thirdly, Lim and Holt used flat distributions - four steps of F2
and two steps of F3 - presented at equal frequency, whereas
the present study used approximately Gaussian distributions.
Therefore the present study makes an important contribution by
directly testing effects of the degree of distributional variance
on acquisition of a new acoustic dimension.

While several recent studies have emphasised the facilita-
tive effect of variability on learning [11, 12, 10], it is impor-
tant to distinguish between within-category acoustic variance in
the critical dimension and variability in non-contrastive dimen-
sions. Variability can lower cue weighting. If that variability is
in a contrastive dimension, it may hinder discrimination.
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