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A B S T R A C T

Despite burgeoning evidence that listeners are highly sensitive to statistical distributions of speech cues, the
mechanism underlying learning may not be purely statistical tracking. Decades of research in animal learning
suggest that learning results from prediction and prediction error. Two artificial language learning experiments
test two predictions that distinguish error-driven from purely statistical models; namely, cue competition –
specifically, Kamin’s (1968) ‘blocking’ effect (Experiment 1) – and the predictive structure of learning events
(Experiment 2).

In Experiment 1, prior knowledge of an informative cue blocked learning of a second cue. This finding may
help explain second language learners’ difficulty in acquiring native-level perception of non-native speech cues.
In Experiment 2, learning was better with a discriminative (cue–outcome) order compared to a non-dis-
criminative (outcome–cue) order. Experiment 2 suggests that learning speech cues, including reversing effects of
blocking, depends on (un)learning from prediction error and depends on the temporal order of auditory cues
versus semantic outcomes.

Together, these results show that (a) existing knowledge of acoustic cues can block later learning of new cues,
and (b) speech sound acquisition depends on the predictive structure of learning events. When feedback from
prediction error is available, this drives learners to ignore salient non-discriminative cues and effectively learn to
use target cue dimensions. These findings may have considerable implications for the field of speech acquisition.

1. Introduction

Listeners are able to discriminate remarkably fine-grained acoustic
differences, when those differences discriminate meaning in listeners’
(native) language(s). This is in stark contrast to differences in acoustic
dimensions that are not discriminative, where perceptual sensitivity
tends to be much lower. For example, as English is a non-tonal lan-
guage, English native speakers tend to have lower sensitivity to the
pitch dimension and therefore often have difficulty learning to use it as
a lexical cue in tonal languages. Furthermore, there is enormous
variability across languages in the types of acoustic dimensions, as well
as the particular values of dimensions that discriminate meaning. Given
this variability between languages, how do listeners learn which spe-
cific cues and dimensions are relevant for their own languages?

The present paper1 begins with an extensive review of the literature,
covering speech perception in infants and adults and two independent
lines of research on learning: (a) human speech acquisition research, in
particular distributional learning and (b) discriminative, error-driven

learning, which has its origins in animal learning research, but has been
increasingly being applied to human learning. Two key predictions are
presented that distinguish between purely statistical and error-driven
discriminative models – namely, cue competition (specifically,
blocking) and unlearning. An introduction to the Rescorla–Wagner
learning equations is presented, followed by two artificial language
learning experiments with human participants, which test the above
predictions. To preempt the results, the two experiments provide evi-
dence that learning involves both cue competition and unlearning.
While this finding does not rule out the possibility that other mechan-
isms, such as statistical learning, could occur in parallel, the results are
difficult to explain with a purely statistical account.

1.1. Perceptual shaping as a result of linguistic experience

In the first months of life, infants are able to discriminate almost all
of the speech sounds of the world's languages tested so far (e.g. Werker
& Tees, 1984). However, as experience with the native language(s)

https://doi.org/10.1016/j.cognition.2019.104081
Received 19 March 2019; Received in revised form 18 September 2019; Accepted 18 September 2019

E-mail address: jessie.nixon@uni-tuebingen.de.
1 The reference in the title to John Steinbeck's Of Mice and Men, which comes from Robert Burns’ poem To a Mouse, is here intended simply to draw attention to the

similarity in the learning mechanisms between people and other animals. Although the sentiment expressed in Burns’ poem may also have a place here.

Cognition 197 (2020) 104081

0010-0277/ © 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/BY-NC-ND/4.0/).

T

http://www.sciencedirect.com/science/journal/00100277
https://www.elsevier.com/locate/cognit
https://doi.org/10.1016/j.cognition.2019.104081
https://doi.org/10.1016/j.cognition.2019.104081
mailto:jessie.nixon@uni-tuebingen.de
https://doi.org/10.1016/j.cognition.2019.104081
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cognition.2019.104081&domain=pdf


increases, the ability to discriminate non-native sounds decreases (Best,
McRoberts, & Goodell, 2001). Adults often show poor discrimination
performance with non-native sounds. Furthermore, in non-native
speech perception, discrimination performance is affected by the re-
lationship between native and non-native cues (e.g. Best, McRoberts, &
Sithole, 1988; Flege, 1987, 1995). It appears that honing of the per-
ceptual system to optimise native speech perception leads to poorer
perception of acoustic differences that are not important for dis-
criminating messages in the native language.

The general pattern of development of speech sound discrimination
can be summarised thus: infants start out with acute sensitivity to small
acoustic differences in almost every tested acoustic dimension used in
human languages; adults often have sharpened sensitivity to acoustic
differences that are meaningful in their native language, compared to
infants; but adults also have reduced sensitivity in certain cases where
differences are not meaningful. Specifically, sensitivity is reduced for
acoustic dimensions that vary in speech but do not discriminate be-
tween lexical items (such as pitch in non-tonal languages). Sensitivity is
also reduced within dimensions used for lexical discrimination when
the particular range of cue values does not usually discriminate lexical
items (i.e. reduced sensitivity to within-category differences). However,
sensitivity is not reduced for sounds that do not occur at all in the native
language (Best et al., 1988).

1.2. Distributional learning models

One highly influential approach to explaining the pattern of effects
described above is the statistical (or distributional) learning approach.
Speech production data show that acoustic dimensions exhibit statis-
tical regularities that depend on whether the dimension is dis-
criminative in a given language. For example, voice-onset time (VOT)
forms two clusters (approximately Gaussian distributions) in languages
such as English, that use VOT as a cue to lexical contrasts (e.g. Magloire
& Green, 1999; Sundberg & Lacerda, 1999): a cluster of relatively short
VOTs from multiple instances of voiced sounds in words such as ‘bear’,
and another cluster of relatively long VOTs from voiceless sounds as in
words such as ‘pear’. This is in contrast to languages such as Pite Saami
or New Zealand Maori, which do not use VOT as a lexical cue
(Maclagan, Watson, Harlow, King, & Keegan, 2009; Wilbur, 2015).
Statistical learning models propose that listeners track the statistical
distribution of cues. In the above example, the number of VOT clusters
would be used to determine the number of voicing categories: two
(voiced and voiceless) in English and one in Maori or Saami.

Statistical learning models were proposed toward the end of the
twentieth century in response to the dominant view at that time that
speech was too complex to be learnable by general learning mechan-
isms and must therefore require special innate neural functions, such as
“feature detectors” (see Eimas, 1985, for a review). Guenther and Gjaja
(1996) presented a neural map model that was based on the statistical
distribution of speech sounds. Non-uniformities in the acoustic dis-
tribution led to non-uniformities in neuron firing preferences in the
auditory system. Further support for models based on statistical in-
formation in the input came from laboratory studies that showed that
participants who are initially able to discriminate speech sounds un-
learn, or learn to ignore, differences after exposure to a unimodal (one-
cluster) distribution. For example, adult native speakers (Maye &
Gerken, 2000) and 6–8-month-old infant learners (Maye, Werker, &
Gerken, 2002) of English were exposed to either a bimodal (two-
cluster) or unimodal distribution of a continuum from voiced [d] to
voiceless unaspirated [t].2 English-speaking adults and infants are able
to discriminate these two sounds (Pegg & Werker, 1997). After

exposure, compared to the bimodal groups, the unimodal groups in
both studies were less likely to hear the endpoints of the continuum as
different sounds. These studies suggested that, within the brief few
minutes of an experiment, infants and adults can learn to ignore dif-
ferences that they were originally able to discriminate. Furthermore,
not only the number of clusters, but even specific properties of the
distributions can affect the way people perceive speech sounds. For
example, the statistical variance, i.e. the amount of acoustic variability
within each category, affects how uncertain people are about what they
are hearing (Clayards, Tanenhaus, Aslin, & Jacobs, 2008; Nixon & Best,
2018; Nixon, van Rij, Mok, Baayen, & Chen, 2016).

In recent years, a number of objections have been raised to the
statistical learning hypothesis (see Cristià, McGuire, Seidl, & Francis,
2011; Werker, Yeung, & Yoshida, 2012, for reviews). For example,
Werker et al. (2012) note that although effects have been found in very
young, 6–8-month-old infants, older infants of 10–11-months do not
reliably show distributional learning effects or may require sub-
stantially longer exposure (Yoshida, Pons, Maye, & Werker, 2010).
There have been reported failures to find distributional learning effects
(Terry, Ong, & Escudero, 2015; Wanrooij, de Vos, & Boersma, 2015)
and the idea that learning depends on the number of peaks in a dis-
tribution has been challenged by the finding that, when dispersion was
controlled, performance was equivalent between unimodal and bi-
modal distributions (Wanrooij, Boersma, & Benders, 2015). Computa-
tional models suggest that statistical learning alone may not be suffi-
cient for learning the sounds of a language (Feldman, Griffiths,
Goldwater, & Morgan, 2013; McMurray, Aslin, & Toscano, 2009).
Furthermore, listeners’ phonetic knowledge does not always correspond
to the statistical distribution of acoustic information in speech.

1.3. Learning theory

Independently of the speech acquisition literature, the investigation
of learning processes has a long history in animal learning research. In
his seminal review, Rescorla (1988) argues that learning (often referred
to as ‘Pavlovian conditioning’ in the animal learning literature) is the
basis of how organisms come to represent the world and that what is
essential is the information a stimulus (or cue) provides about the out-
comes of events. Rescorla worried about a common misconception of
Pavlovian conditioning as simply the forming of an association between
two previously unassociated events – somewhat like a reflex response –
resulting from their repeated co-occurrence or contiguity. The extent of
this misconception is indicated in the title of his article, ‘Pavlovian
conditioning: It's not what you think it is’ (Rescorla, 1988).

Learning theory and its formal implementations, most notably the
Rescorla–Wagner model (Rescorla & Wagner, 1972), were developed to
incorporate insights from decades of research in animal learning. In-
terestingly, researchers in Pavlovian conditioning also initially con-
sidered the idea that the strength of conditioning may depend on the
statistical probability of cue–outcome co-occurrence (Rescorla, 1968).
However, they soon found that co-occurrence statistics were not able to
explain the pattern of results (Kamin, 1968, 1969; Rescorla, 1988;
Rescorla & Wagner, 1972). In these models, rather than being proba-
balistic, learning is instead seen as error-driven. Learning results from
all cues (referred to as the ‘CS, conditioned stimulus,’ in the animal
learning literature) that are present in a given learning event competing
to predict the relevant outcome (‘US, unconditioned stimulus’).

1.3.1. Blocking and cue competition
One of the key findings that drove this new conceptualisation of

learning and the development of the Rescorla-Wagner model was
Kamin’s (1968, 1969) demonstration that, at least in animal learning,
cue learning can be diminished – ‘blocked’ – if a previously learned cue
is sufficient for predicting a given outcome. Rats were trained with two
cues, light + tone, co-inciding with electric shocks, then tested on a
single cue (e.g. light). Prior to this two-cue training, half the rats

2 This is not the canonical English aspirated /t/ as in ‘top’, but an unaspirated
sound, created by removing the ‘s’ portion from the beginning of the syllable,
e.g. [ta] from ‘sta’.
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received pre-training with the cue that was not tested (e.g. tone). Rats
who were not pre-trained showed a fear response (i.e. they ‘condi-
tioned’) to the individual cue, e.g. the light. However, the rats who had
been pre-trained with one cue did not condition to (i.e. did not learn)
the second cue. Because the tone provided sufficient information for
predicting shocks, the light had no additional predictive value and was
therefore not learned during the two-cue training. This result shows
that Pavlovian conditioning is not a simple case of statistical learning
based on conditional probabilities, but instead a process in which all
available cues compete in the process of predicting the relevant out-
come. Since its publication, the Rescorla–Wagner model has become
extremely influential in the field of animal learning and has helped
explain a wide variety of observations (see e.g. Miller, Barnet, &
Grahame, 1995; Siegel & Allan, 1996, for reviews).

1.3.2. Error-driven human learning
Soon after it was published, the Rescorla–Wagner model began to

also be effectively applied to human learning in areas as far-ranging as
paired-associate word learning, category learning, correlational re-
lationship judgments, transitive inference reasoning, social psychology,
visual perception and physiological regulation (reviewed in Siegel &
Allan, 1996). Feedback from prediction error also plays a vital role in
the development of motor control (Cheng & Sabes, 2007; Shadmehr,
Smith, & Krakauer, 2010) and human contingency learning (Dickinson,
Shanks, & Evenden, 1984; Houwer & Beckers, 2002), as well as time
perception (Ramscar, Matlock, & Dye, 2010) and pitch perception in
music (Ramscar, Suh, & Dye, 2011). There is also neuroscientific evi-
dence for the role of error in learning (see Schultz, 1998, for a review).
Event-related potentials in a human contingency judgement task in-
dicate that learning is error-driven, resulting from cue competition,
rather than simple statistical tracking based on conditional probabilities
(Kopp & Wolff, 2000).

Recently, a number of studies have specifically addressed the
question of whether the predictions of error-driven learning models also
apply in language (Apfelbaum & McMurray, 2017; Arnon & Ramscar,
2012; Baayen, Shaoul, Willits, & Ramscar, 2016; Chung, 2003; Colunga,
Smith, & Gasser, 2009; Ellis & Sagarra, 2010; Olejarczuk, Kapatsinski, &
Baayen, 2018; Ramscar, Dye, Gustafson, & Klein, 2013; Ramscar, Dye,
& Klein, 2013; Ramscar, Dye, & McCauley, 2013; Ramscar, Dye, Popick,
& O’Donnell-McCarthy, 2011; Ramscar & Yarlett, 2007; Ramscar, Yar-
lett, Dye, Denny, & Thorpe, 2010; see Kapatsinski, 2018 for an excellent
and thorough recent review). For example, Chung (2003) showed that
for native English learners of Mandarin, learning of Chinese character
meaning was faster and more accurate when the character preceded the
translation during training, allowing participants to make predictions
about the translation and learn from prediction error, compared to si-
multaneous presentation. Learning of pronunciation was also better
with delayed feedback, compared to simultaneous presentation. The
improvement with delayed compared to simultaneous presentation
occurred both in the immediate post-training test and in follow-up tests
two-weeks later. Arnon and Ramscar (2012) found effects of blocking
during learning of determiner–noun pairings from prior learning of
isolated nouns, compared to the reverse order in which whole sentences
were learned first. Ellis and Sagarra (2010) found effects of blocking in
English speakers learning Latin morphology.

Furthermore, while statistical learning models propose that learning
is based directly on the actual, veridical distributions in the input, error-
driven learning predicts instead that the greatest amount of learning
will occur when there is surprise or prediction error. Therefore, in the
distributional learning paradigm, the cues that occur more often (such
as those near the mode of a Gaussian distribution) will each in-
dividually have less influence on learning than the rarer individual cues
at the tails. Olejarczuk et al. (2018) recently showed that distributional
learning of phonetic categories is driven more by the tails of the dis-
tribution, as expected with error-driven learning, rather than the ver-
idical distribution predicted by distributional learning models.

1.4. Discriminitive learning and unlearning

While error-driven learning models have been highly successful in
explaining many observed phenomena, some aspects of the models
have tended to be missed in the literature. Perhaps most crucially, in
focusing on the associations between events, theories have historically
underplayed the importance of unlearning (see Ramscar, Dye, &
McCauley, 2013, for a full discussion). Note that Rescorla and Wagner
(1972) explicitly discuss the importance of unlearning, or decrements
of associative strength, for uninformative cues. However, this aspect of
the model often seems to have been overlooked. It is possible that this is
due to the context and paradigms in which the model was initially
formulated. For example, in Kamin's blocking experiments, which re-
present one of the most important findings that drove the development
of the theory, an outcome (shock) occurred on every training trial.
What happened to cue–outcome connections when the outcome was not
present (i.e. negative evidence) was not explored. Neither did the issue
of unlearning from negative evidence appear in Rescorla’s (1988) re-
view, although cue–outcome probability is discussed. Some authors
(e.g. Xu & Tenenbaum, 2007) have specifically argued that learning
does not require negative evidence (i.e. learning from absence of ex-
pected outcomes) and focus on modelling learning from positive evi-
dence alone. However, recent evidence suggests that the unlearning
that occurs with negative evidence is a critical component of error-
driven learning, and may play an even greater role than positive evi-
dence (Ramscar, Dye, et al., 2011; Ramscar, Dye, Gustafson, et al.,
2013; Ramscar, Dye, & Klein, 2013; Ramscar, Dye, & McCauley, 2013;
Ramscar & Yarlett, 2007; Ramscar, Yarlett, et al., 2010).

A particular variant of error-driven learning, discriminative learning
(e.g. Ramscar, Dye, et al., 2011; Ramscar, Dye, Gustafson, et al., 2013;
Ramscar, Dye, & Klein, 2013; Ramscar, Dye, & McCauley, 2013;
Ramscar & Yarlett, 2007; Ramscar, Yarlett, et al., 2010) has been de-
veloped to address these issues and has been successfully applied to
multiple areas of language processing, including semantic category
acquisition, gender and plural acquisition, speech comprehension,
morphological processing and lexical decision (Arnold, Tomaschek,
Sering, Lopez, & Baayen, 2017; Arnon & Ramscar, 2012; Baayen et al.,
2016; Baayen, Milin, Đurđević, Hendrix, & Marelli, 2011; Milin,
Feldman, Ramscar, Hendrix, & Baayen, 2017; Ramscar, Dye, &
McCauley, 2013; Ramscar & Yarlett, 2007; Ramscar, Yarlett, et al.,
2010; Shafaei-Bajestan & Baayen, 2018).

The basic premiss of discriminative learning is that learning is a
process of uncertainty reduction, rather than mere knowledge acquisi-
tion. In any learning event, any discriminable aspect of the environment
can compete to predict relevant outcomes. Like other associative
learning models, connection weights of cues that are (repeatedly) in-
formative for predicting particular outcomes are strengthened.
However, a critical aspect of discriminative learning theory is the role
played by cue unlearning – the weakening or downweighting of unin-
formative cues – in forming a learner's knowledge of the environment.
In any given learning event, weights are weakened between all present
cues and any outcomes that are not present in the current input, if the
outcome has been encountered before.

1.5. The Rescorla–Wagner learning equations

The predictions in the present study are derived from the
Rescorla–Wagner equations, implemented in the ndl package (Arppe
et al., 2015) in R (R Core Team, 2017). The Rescorla–Wagner equations
estimate the connection strength, or weights � , between the input cues
� (� ∈ = …c k K, 1, 2, ,k ), and a set of outcomes �

(� ∈ = …o n N, 1, 2, ,n ). The network grows incrementally with each
training trial. At the end of training with k cues and n outcomes, the
network consists of a ×k n matrix of connection weights. On each
training trial, weights are adjusted between all and only cues present on
that trial and all outcomes present or encountered previously. The
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adjustment to the connection weight between a cue ci and outcome oj on
a given trial, or learning event, t , is given by the Rescorla–Wagner
equations:

= +−w w wΔ .t t t
ij
( )

ij
( 1)

ij

The connection strength at the end of learning event t is equal to the
connection strength at the end of the previous learning event, −t 1,
plus any change during the current learning event.

The change in weights during the current learning event, wΔ t
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given by the Rescorla–Wagner equations3 :
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in which λ is the maximum learnability of the outcome; and αi and βj
refer to cue and outcome salience, respectively.

Put simply, the above equation says that (a) for any cue not present
in a given learning event, no adjustment is made; (b) if a cue is present
and an outcome is also present, the cue–outcome weight increases; (c) if
a cue is present and an outcome is not present, cue–outcome weight
decreases; (d) for any cues or outcomes that have not yet been en-
countered, no adjustment is made. The amount of adjustment made (in
b and c) depends on the history of learning: the size of increase or
decrease in strength is calculated based on the sum of connection
strengths from the previous learning events of all present cues (sub-
tracted either from λ or from 0 and multiplied by the learning rate).

There are a couple of aspects of the model that are worth high-
lighting. Note that the model explicitly incorporates the notion that not
only are weights increased when cues and outcomes co-occur, but for
any cues present in a given learning event, weights decrease to out-
comes that are not present, if those outcomes have been encountered
previously. This is the formalisation of unlearning. Secondly, for all
outcomes, the degree to which learning occurs depends on the history
of learning of all cues present. When the total connection strength be-
tween all cues present and a given outcome is large (specifically, as it
approaches lambda), then learning on positive trials becomes small.
This is because the error remaining in the model is small. Conversely, if
the total connection strength of all cues present is large and the out-
come does not occur (negative evidence), there is a large amount of
error and consequently of learning.

1.6. The present study

The present study investigates learning of non-native acoustic
speech cues. The study concerns two related aspects of speech acqui-
sition. Firstly, it relates to how speech sounds (cues) come to be used to
effectively predict outcomes, such as word or morphological meanings.
Secondly, it relates to how listeners learn which speech sound cues are
important in their language and which are not – or gradient levels of
importance – which is proposed to result from the same process.

Two main issues that differentiate discriminative learning models
from statistical learning and positive-evidence-only associative models
are tested. Key predictions of the three models are shown in Table 1.
The first and second columns refer to distributions based on raw counts
and cue competition during learning, respectively. In statistical learning
models, a distribution is defined based on raw counts of all stimuli

combined. (For example, frequency, unimodal or bimodal distributions
of cues or co-occurrence probability.) Statistical learning models pre-
dict that learning will mimic the statistical structure of the input.

Associative models (both positive-evidence and discriminative), on
the other hand, see learning as an iterative process, and therefore in-
crement learning in a trial-by-trial manner. Outcomes are seen as
having a limited maximum ‘associative strength’. When the maximum
associative strength is reached – that is, when an already-learned cue or
cues perfectly predict an outcome – no more learning will occur.
Therefore, associative models predict an effect of the history of learning
on current learning (while statistical learning models do not). Due to
the limited associative strength, cues compete for relevance in pre-
dicting an outcome, so if certain cues have already obtained a strong
association with an outcome (i.e. already predict the outcome), any
cues encountered later will be ‘blocked’ from being learned (see also
Fig. 3 for an illustration of cue competition in the blocking effect). If
blocking occurs during learning of speech sounds, this would be evi-
dence against a purely statistical account of speech sound acquisition.
In contrast, because statistical models are based on counts of data,
learning can continue indefinitely and linearly. Cues do not compete for
associative strength and, therefore, no effect of blocking is expected.

Experiment 1 tests whether speech sound acquisition involves cue
competition in the form of blocking. Specifically, learning of non-native
speech cues is expected to be better in the control condition, when there
is no history of learning of the critical cues, compared to the blocking
condition, when learning of the first cue during pre-training is expected
to block learning of the second cue in the following training phase.

The third column of Table 1 relates to unlearning from negative
evidence. Unlearning is the downweighting of connection strength be-
tween any present cues and any absent outcomes (specified in the third
row of Eq. (1)). This is a key aspect that differentiates positive-evidence
only models from discriminative learning. As discussed above, some
researchers claim that learning is based on positive evidence alone.
Even when this claim is not made explicitly, the importance of un-
learning has often been overlooked in the literature. The focus has often
been on positive association, although unlearning is inherent in the
Rescorla–Wagner model. Even the name ‘associative’ suggests an em-
phasis on co-occurrence.

It may also be worth pointing out here that the Rescorla–Wagner
equations assume an asymmetry between cues and outcomes. Cues
predict outcomes. This means that the temporal relation between cues
and outcomes is important. This aspect sets discriminative learning
models apart from Hebbian models (e.g. Hebb, 1949), for instance, in
which two cells simply ‘fire together’.

Experiment 2 tests whether acquisition of speech sounds involves
unlearning. Learning of acoustic cues is expected to be better when the
acoustic cues precede the visually presented semantic outcomes, com-
pared to the reverse order. This is because some of the acoustic cues are
informative for predicting the outcomes and some are not. When the
cues occur before the outcomes (discriminative order), predictions can
be made about which outcome is expected to occur based on the various
acoustic cues. When uninformative cues fail to predict an outcome, this
leads to prediction error and the connection weight between these cues
and the outcome is weakened – that is, the cues are unlearned as

Table 1
Summary of the predictions of statistical learning, positive-evidence-only
models and discriminative, error-driven learning models. Cue competition and
blocking are investigated in Experiment 1; unlearning from negative evidence is
investigated in Experiment 2.

Raw
counts

Cue competition incl.
blocking

Unlearning (negative
evidence)

Statistical Yes No No
Positive-evidence No Yes No
Discriminative No Yes Yes

3 A simplified description of the model is presented here. For a more formal
version, see Appendix A.
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predictors of that outcome. On the other hand, when informative cues
accurately predict an outcome, connection weights are strengthened.
Over time, this process of cue competition leads to stronger connection
weights for informative cues, compared to uninformative cues (see also
Fig. 8 for an illustration of unlearning and the effect of cue–outcome
order).

However, when the visual outcomes precede the acoustic cues (non-
discriminative order), there is no cue competition. The visual shapes are
simple with no variation, so there are no cues that can compete with
each other. Each shape occurs with two different acoustic stimuli with a
certain probability. Because there is no cue competition, connection
weights simply fluctuate, increasing when an outcome occurs and de-
creasing again when it does not occur. Therefore, participants are ex-
pected to learn the probability of encountering each of the acoustic
stimuli. Performance on high-frequency stimuli will appear good, at
least on the surface. Because of the high frequency of occurrence (a
certain shape with a certain syllable), even if responses are based on the
wrong (non-discriminative) aspects of the syllable, they will still be
correct most of the time. However, in the low-frequency stimuli, if re-
sponses are based on the non-discriminative aspects of the syllable, they
will be wrong.

Therefore, no difference between conditions is expected for the
high-frequency stimuli, but learning of low-frequency stimuli is ex-
pected to be better in the discriminative order, compared to the non-
discriminative order. Note that the stimuli are identical between con-
ditions; only the order of acoustic cues versus visual semantic outcomes
is manipulated.

2. Experiment 1: Blocking

Statistical learning models propose that learning is based on the
statistical distribution of all cues collected together (see Fig. 1). In
particular, a bimodal distribution of acoustic cues should lead to dis-
crimination of two sounds due to the forming of two clusters (Maye
et al., 2002; Maye & Gerken, 2000; Maye, Weiss, & Aslin, 2008). This is
based on the idea that listeners form “mental histograms” by keeping
track of the frequency of occurrence of cue values (Maye & Gerken,
2000). Importantly, because statistical learning is based on frequency
counts, the order in which cues are learned does not affect learning.

Error-driven learning models, on the other hand, propose that in
each learning event – or trial – all cues in the input ‘compete’ in the
process of predicting the outcome. This means that learning on each
trial depends on the history of learning of the cues. Only when there is
uncertainty about the outcome is there potential for learning about the
present cues. When a strong predictive relationship has already been
formed between a cue and outcome – that is, when the outcome is
highly predictable – there is no longer room for further learning. In the
Rescorla–Wagner model, learning has reached asymptote. Kamin

described this same concept in terms of ‘surprise’. Changes in
cue–outcome connection strength only occur when the outcome leads
to surprise. When an outcome is predictable from already-learned cues,
then when the outcome does occur, it is expected and there is therefore
no surprise – that is, no error – to drive further learning, including
learning of any other cues that might be present. To illustrate using the
case of Kamin's rats described above, after the first training phase (light
then shock), whenever the rats saw the light they knew the shock was
coming. There was no surprise or uncertainty left to drive learning of
the new cue, tone, in the second (light + tone then shock) phase.

Predictions are shown in Fig. 2 for discriminative learning. The
discriminative learning model (R package ndl) is initially presented
with a single cue (e.g. tone) or control cue (VOT) to an outcome (size),
then later presented with two cues (nasality + tone) to the same out-
come. The plot shows predictions for learning the second cue (nasality).
The model predicts that learning will be poorer after blocking pre-
training, compared to control pre-training.

In Experiment 1, participants saw two pictures on the computer
screen and heard a spoken word. They were instructed to click on the
picture corresponding to the word. The two pictures were the same
except that one was the original size and one, the ‘diminutive’, was
smaller. Participants had to learn the speech cue signalling the di-
minutive. Just like the model, human participants were presented with
a single cue (e.g. tone) or a control cue (VOT) to an outcome (size)
during the pre-training phase. Next, in the training phase, they were
presented with two cues (nasality + tone) to the same outcome. In the
test phase, participants were tested only on the cue that did not occur in
the pre-training phase (e.g. nasality).

If listeners learn the speech cues by discriminative learning, we
expect accuracy to be lower after blocking pre-training, compared to
control pre-training (Fig. 2). If listeners learn from statistical distribu-
tions, we would expect no difference between conditions for the second
cue, as the two categories should emerge from the two clusters of
acoustic cues, which are the same between conditions (see Fig. 1).

2.1. Method

Both experiments used the ‘roofrunner’ online game (Rácz, Hay, &
Pierrehumbert, 2017; see also Beckner, Pierrehumbert, & Hay, 2017;
Schumacher, Pierrehumbert, & Lashell, 2014, for different game var-
iants). A ‘flying creature’ communicates with an interlocutor in order to
continue flying along the rooftops. Training phases had a daytime set-
ting and test phases a night-time setting.

2.1.1. Participants
Participants in Experiment 1 were 187 native speakers of English

living in the US, recruited online via Amazon Mechanical Turk. They
were paid $4 for participation. In both experiments, all participants

Fig. 1. In statistical learning models, learning is based on the frequency distribution of acoustic cue values, for example, pitch in tone categories (left panel) or
nasality in oral versus nasal vowels (right panel).
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gave consent in an online informed consent form. After the experiment,
participants filled out a questionnaire about their demographic back-
ground, including questions about their native language and in which
country they learned this language. Participants whose native language
was not English acquired in the US were excluded from the analysis
(eight participants). An additional 22 participants were also recruited
but were excluded from analysis because they did not complete the
experiment (20 participants) or due to technical problems that led to
them completing too many trials (two participants). Each experiment
lasted approximately 20–30 min.

2.1.2. Stimuli
In both experiments, auditory stimuli were monosyllabic words

produced in isolation by a native speaker of Southern Min with pho-
netics training. Southern Min was selected because it is a tonal language
with a nasality distinction. In Experiment 1, this meant that two
acoustic dimensions that are non-native for English speakers could be
independently manipulated with both cues occurring in the vowel to

match the timing of the cue as closely as possible. Naturally produced
speech tokens were used to avoid artefacts in synthesised speech.
Naturally produced speech tokens are also more speech-like, more
likely to be processed as language and therefore may be more learnable
(Logan, Lively, & Pisoni, 1991), compared to artificially produced sti-
muli. Sixty-four different base (segmental) syllable types, two tones
(mid-level, high-level) and two levels of nasality (nasal, oral) were
used. Different segmental syllables were used between pre-training,
training and test.

Mid-tone, oral words were used as baseline stimuli, because they are
most similar to English speech. The more acoustically distant non-na-
tive speech sounds are from native language speech sounds, the more
likely they are to be detected and perceived, while similar sounds tend
to be ‘assimilated’ to native speech sounds (Best, 1995; Best et al., 2001;
Flege, 1995; Flege, Takagi, & Mann, 1995). The mean fundamental
frequency (f0) for the different cue types was: mid-tone oral: 198 Hz;
high-tone oral: 242 Hz; mid-tone nasal: 198 Hz and high tone nasal:
239 Hz. Because mid-level tones are produced around the middle of the

Fig. 2. Simulation of the Kamin blocking effect applied to
acoustic cue learning, as in Experiment 1. The connection
weight (y-axis) over trials (x-axis) is shown for the nasality cue
to the diminutive outcome in the control (VOT) pre-training
condition (left) and blocking pre-training condition (right). In
the blocking condition, a single cue is first learned as a pre-
dictor to a particular outcome, in this case tone as a cue to
diminutive size (pre-training phase). Later (Phase 2; onset
indicated by the vertical dashed line), a second cue is pre-
sented simultaneously with the original cue: tone and nasality
as cues to diminutive size. The control condition is the same
except that a control cue (VOT) is presented in the pre-training
phase, instead of a critical cue. In Phase 2, the connection
weight of nasality increases in the control condition, but re-
mains low in the blocking condition. In the blocking condi-
tion, learning of the second cue, nasality, is ‘blocked’ by the
first cue, tone. The simulation assumes equal salience of tone
and nasality cues.

Fig. 3. Illustration of cue competition in the blocking effect.
Arrow thickness indicates (very approximately) connection
strength. Blocking condition (left). In the Pre-training phase,
the first cue (red) predicts the outcome (circle) and connection
weights develop (indicated by the arrow). In the Training
phase, two cues (red and blue) are presented. Connection
weights from both cues (red and blue) to the outcome in-
crease. However, the amount of increase is small. Because the
maximum connection strength to the outcome is limited, and
because the red cue has already been learned, there is less
connection strength left for learning in the training phase. The
amount that is left is split between the two cues. Therefore, at
the end of the training phase, the connection weight from the
second cue (blue) is still weak. During the Test phase, if the
blue cue is presented, it only weakly predicts the outcome.
Control condition (right). In the Pre-training phase, there is
no learning of the red cue in the control condition. Only a
control cue is learned. Therefore, in the Training phase, both
cues (red and blue) are learned together at the same rate,
reaching equal connection strength. In the Test phase, the blue
cue is therefore stronger than in the blocking condition. (For
interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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voice range, they are close to the f0 used in US English speech. For
native US English speaking women mean f0 is around 200 Hz (Pépiot,
2014). The high-level tone, in contrast, is higher than typical US English
speech and therefore more likely to be detectable as an additional cue,
compared to the mid-level tone. Similarly, oral vowels are most similar
to English speech, as English does not have a nasality distinction for
vowels. Therefore, the low oral vowels are likely to be perceived as
more typical English sounds and the nasal vowels and high-level tones
are more likely to be perceived as additional cues. Accordingly, low oral
words were set as the baseline and corresponded to the baseline (ori-
ginal size) images, while the additional cues, high pitch and nasality
corresponded to the diminutive images.

The visually presented semantic stimuli were 128 images adapted
from the game Glitch by Tiny Speck (http://www.glitchthegame.com/
public-domain-game-art/). Pairs consisted of original and reduced-size
(‘diminutive’) images (45% of the size of the original). Each image pair
was presented twice, once for each corresponding word.

2.1.3. Experiment design
Experiment 1 had three phases: pre-training, training and test (see

Table 2). In pre-training, participants received either blocking pre-
training or control pre-training. The following training phase was iden-
tical for all groups. The test cue was counterbalanced between parti-
cipants. Therefore, there were four participant groups: 2 pre-training
conditions (blocking, control) × 2 cue types (tone, nasality).

Participants receiving blocking pre-training were trained with one
critical cue (e.g. tone). The baseline (mid-tone oral) corresponded to
original sized images; additional cues (e.g. high tone) corresponded to
diminutive images. Participants receiving control pre-training were
trained with a control cue, VOT, that was not used in test. In the
training phase, all groups received identical training: both cues si-
multaneously (i.e. high, nasal stimuli) signalled the diminutive. In the
test, participants were tested on the cue that was not pre-trained (e.g.
nasality).4

The prediction is that, if blocking occurs in speech learning,

performance will be better in the control condition than in the blocking
condition. In the blocking condition, learning of one cue during pre-
training should block learning of the second cue during the training
phase. So, when the second cue is presented during the test phase,
performance will be worse after blocking pre-training than after control
pre-training.

2.1.4. Trial procedure
In both the pre-training and training phases, participants saw two

images on the screen: one original size, one diminutive. An auditory
word was presented 200 ms prior to the images. There was an inter-trial
interval of 1000 ms. The order of trials was randomised individually for
each participant. The location of the images on the screen (left or right)
was also randomised throughout the experiment. In the first half of the
pre-training and training phases, the two corresponding trials (original
size and diminutive) occurred in sequence. The task was to click on the
image corresponding to the word. Feedback was given on each trial by
highlighting target pictures in green/red for correct/incorrect re-
sponses. Additionally, the character flew forward on correct trials, but
was knocked down on incorrect trials. During the test, the trial proce-
dure was the same except that corresponding trials were not presented
in sequence and feedback was not given.

2.2. Analysis and results

A generalised linear mixed effects (glmer) model tested effects of
pre-training on probability of selecting the target (using the lme4
package in R; Bates, Mächler, Bolker & Walker, 2015). The model in-
cluded three two-level factors: image size (original, diminutive), cue
type (tone, nasal) and pre-training condition (blocking, control) and
their interactions. Random intercepts for participants and items and
random slopes for size by participant were included. Trial was tested,
but did not improve model fit so was removed. Random slopes for
condition by item were tested, but the models did not converge.5

Fig. 4 shows model estimates of the proportion of correct responses
in the blocking versus control conditions for diminutive and original
size images (left panel) and for tone and nasal stimuli in the control
versus blocking conditions (right panel). Table 3 shows the model
summary. Original size targets were selected significantly more often
than diminutives. This is probably because they were baseline stimuli
and would be the default if additional cues were not perceived. Size also
interacted with cue type. For diminutive items, targets were selected
more often for the tone cue than the nasal cue. There was a significant
three-way interaction between size, condition and cue. For original size
stimuli, there was no significant difference between conditions (nasal

=p 0.168; tone =p 0.085).6 Most importantly for the present study, for
the nasal stimuli, as predicted, participants selected diminutive targets
significantly more often after control pre-training than blocking pre-
training. There was no effect of training type for tone stimuli
( =p 0.483). The significant effect of blocking for the nasal cue supports
the prediction that prior knowledge of an informative cue can block
learning of a second cue – even when that cue would otherwise be in-
formative for predicting the outcome, as the control condition shows.
This replicates Kamin’s (1968) finding of a similar effect on stimulus
conditioning in rats.

One question the results raise is why the blocking effect was not
significant for the tone stimuli. The overall accuracy for tone stimuli
was significantly higher than nasal stimuli <p( 0.0001). This suggests
that the absence of blocking for tone may be due to the nasal cue not
being fully acquired during pre-training. In order to further investigate
the validity of this explanation, accuracy during the pre-training phase

Table 2
Experiment design of Experiment 1. The experiment has two conditions, which
depend on the type of pre-training (control: with control cues, voice-onset time,
VOT; or blocking with nasal or tone cues). Pre-training phase: in the blocking
condition, participants hear a critical cue (tone: low versus high; or nasality:
oral versus nasal). In the control condition, they hear a control cue, voice onset
time. Training: in the following training phase all participants hear two cues
(tone plus nasality: low, oral versus high, nasal). Finally, in the test phase, they
hear the cue that was not pre-trained (nasality or tone).

Condition Pre-training Training Test cue

Blocking Tone Tone + nasal Nasality
Control VOT Tone + nasal Nasality
Blocking Nasality Tone + nasal Tone
Control VOT Tone + nasal Tone

4 An alternative control condition was initially considered; namely, no pre-
training. However, this possibility was decided against, on the basis that if a
blocking effect were found, it could be argued that this could be due to fatigue,
boredom or lack of concentration due to having twice as many trials in the
blocking condition. A control condition with control cues was selected instead,
to control for the number of trials between conditions. This also arguably
provides a stronger test of the blocking effect, since it might be expected that
participants would do worse with control cues compared to no pre-training, due
to the potentially confusing task of learning one set of control cues and then
having to learn a different set of cues. However, it is also possible that the
different cue used in the control pre-training could alert participants to the
possibility that cues can vary, enhancing sensitivity to changes in cues. This
possibility could be tested in future experiments with a no-pre-training control
condition.

5 Convergence failure occurred regardless of whether dummy or effects
coding was used.

6 Obtained by relevelling the model.
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was inspected. The pre-training accuracy across conditions is shown in
Fig. 5. Learning is comparable across the blocking and control condi-
tions during the pre-training phase. A separate glmer model of pre-
training accuracy was run. The model showed no difference in accuracy
between the tone control and the nasal control groups =t( 0.03);
however, accuracy was significantly higher for the tone stimuli than the
nasal stimuli during the pre-training phase =t( 2.68). If the nasal cue
did not do a good job of predicting the image outcome for these lis-
teners by the end of pre-training, then there would still be sufficient
uncertainty during the following training phase to drive learning of the
new cue (Rescorla & Wagner, 1972).

Inspection of the effect of individual pre-training scores on

performance in the test phase provides further evidence for a blocking
effect. A separate glmer model was run on the data from the blocking
condition. Accuracy during the pre-training phase was used as a nu-
merical predictor of accuracy during the test phase. The model included
cue type, size and pre-training score, and the interaction between size
and pre-training score, as well as random intercepts for participants and
items. Pre-training score was significant = − =z p( 2.546, 0.0109) as was
the interaction between pre-training score and size

= <z p( 14.318, 0.0001). When the interaction with cue type was in-
cluded, the model failed to converge; however, the effect of pre-training
score seems to stem from the nasal cue. The model results are shown in
Fig. 6. The results showed that the better the score during pre-training,
the greater the blocking effect; that is, the better the pre-training score,
the worse the performance during test for the diminutive items and the
better the score for the baseline original size items.

2.3. Discussion

Experiment 1 tested whether acquisition of speech sounds involves
cue competition, as predicted by error-driven learning models. Either a
single critical cue (e.g. tone; blocking condition) or a control cue
(control condition) was presented during the pre-training phase, then

Fig. 4. Model estimates for the results of Experiment 1. Left: estimated proportion of correct responses for the blocking (blue, dashed line) versus control condition
(red, solid line) for diminutive and original size pictures. Centre: estimated proportion correct for the nasal (left) and tone cues (right) in the blocking (blue, dashed
line) versus control condition (red, solid line) for diminutive pictures. Right: Plot of the estimates of the contrast of accuracy in the blocking condition relative to the
control condition. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 3
Model summary for effect of blocking versus control pre-training on selecting
the target picture during the test phase. Model is dummy coded.

Fixed effects Estimate Std. error z -value < ∣ ∣Pr z( )

(Intercept) −0.1304 0.1840 −0.709 0.4836
Cond = blocking −0.5006 0.2329 −2.150 0.0314
Size = original 1.3544 0.1329 10.188 <0.0001
Cue = tone 1.1197 0.2598 4.310 <0.0001
Cond = blocking: size = original 0.1545 0.1249 1.237 0.2094
Cond = blocking: cue = tone 0.7313 0.3421 2.137 0.0329
Size = original: cue = tone −0.7093 0.1615 −4.393 <0.0001
Cond = blocking:

size = original:cue = tone

−0.7212 0.1820 −3.962 <0.0001

Fig. 5. Pre-training phase accuracy across conditions.

Fig. 6. Model plot of effect of pre-training score on accuracy during the test
phase for diminutive and original size items. The better the pre-training score,
the worse the performance for the diminutive items and vice versa for the
original size items.
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this critical cue was presented along with a second cue (e.g. nasal) in
the next training phase. In the test only the second cue was presented.
Accuracy was significantly higher after control pre-training than
blocking pre-training for the nasal cue. When the first cue was learned
in the pre-training phase, this ‘blocked’ learning of the second cue.
These results replicate Kamin’s (1968) blocking effect, originally de-
monstrated in rats, and demonstrate that cue competition also occurs
during learning of speech cues.

In addition to the effects of the blocking condition, inspection of the
individual scores in the pre-training phase on accuracy during the test
phase provides further evidence for blocking. This negative correlation
between pre-training and test accuracy is particularly striking con-
sidering that it goes in the opposite direction to what might be expected
on the basis of individual differences in perceptual ability.

The present results are difficult to reconcile with a purely statistical
clustering account of speech sound acquisition, because the statistical
distributions were the same in both conditions. According to statistical
learning, two categories of speech sounds should form in both condi-
tions, due to the bimodal distribution (see Fig. 1). Note that these re-
sults do not rule out the possibility that statistical tracking also occurs,
perhaps in parallel. However, statistical tracking alone cannot account
for these effects. Importantly, under certain circumstances, namely
when discriminative cue structure – and therefore, cue competition – is
not available, error-driven learning predicts that learning will reflect
the statistical properties of the input (as we will see in Experiment 2).

The finding of a blocking effect for speech cue learning has im-
plications for first and second language acquisition and speech per-
ception. As noted above, language acquisition changes over the course
of development. In experimental paradigms in which infants unlearn
speech sound differences that they can initially discriminate, 10–11-
month-old infants require longer exposure than 6–8-month-old infants
(Werker et al., 2012; Yoshida et al., 2010). Especially as adults, but
even as infants, the experience of learning our native language affects
our use of non-native languages. Our perception and production of non-
native sounds depends on the relationship of the non-native sounds to
our native language (e.g. Best et al., 1988; Flege, 1987, 1995). The
history of cue learning may affect speech acquisition when already-
learned native cues block learning of new, non-native cues.

It appears that tone was easier to learn than nasality. This difference
in learnability of the tone and nasal cues may be due to prior language
exposure. Although English uses nasal consonants (Turnbull, Seyfarth,
Hume, & Jaeger, 2018), it does not use oral versus nasal vowels to
discriminate word meaning, as in Southern Min. For English speakers,
the most likely encounter with nasal vowels is probably from French,
either from learning French as a second language or from cultural ex-
posure, such as in films and other media. In French, nasal vowels co-
occur with a shift in formant frequency; for example, the words ‘fran-
cais’ (e.g. ‘Parlez-vous francais?’), ‘blanche’ (e.g. ‘carte blanche’), the
name ‘Jean’ (e.g. ‘Jean-Luc Picard’). The vowel quality changes along
with the nasality. This may lead to a strong expectation in English
speakers that nasal vowels have a shift in the vowel quality relative to
their oral counterparts, making it more difficult to detect a nasal vowel
without a shift in the vowel formants. Another possibility is that pitch
may be perceived as indicating diminutive by English listeners (Ohala,
1983; Ohala, Hinton, & Nichols, 1997; Tsur, 2006, see also Monaghan,
Shillcock, Christiansen, & Kirby, 2014).

As mentioned above, discriminative learning predicts that when cue
competition is not available, learning will appear more like statistical
learning and more closely resemble the statistical input. Experiment 2
tests how the presence versus absence of cue competition affects
learning of speech sounds. The effects of cue competition are tested by
manipulating the temporal order of complex, discriminative acoustic
stimuli, which contain predictive cue structure, and simple, non-dis-
criminative visual outcome stimuli, which do not contain predictive cue
structure.

The Kamin blocking effect is an iconic symbol of error-driven

learning and cue competition. Kamin's finding was one of the key
contributions to the development of error-driven learning theory and
the Rescorla–Wagner model. Therefore, the design of Experiment 1 was
closely modelled on the original blocking experiments. However, it is
also important to note that Kamin's experiment was only designed to
test increases in connection strength through co-occurrence of cues and
outcomes. There were no trials where a cue that had been previously
associated with the shock later occurred in the absence of the shock. So,
it did not test weakening of connection strength when cues and out-
comes do not co-occur. Consequently, Experiment 1 does not tease
apart whether learning speech sounds occurs only when cue and out-
come co-occur (positive evidence) or whether unlearning occurs for
connections between present cues and absent outcomes (negative evi-
dence), as predicted by the Rescorla–Wagner equations. This is in-
vestigated in Experiment 2.

3. Experiment 2: Cue–outcome order

Experiment 2 tests two related questions. Firstly, does learning of
speech sounds occur simply due to ‘association’ of two previously un-
related events (such as an acoustic stimulus and a semantic stimulus)?
Or is the relationship predictive? If it is predictive, this means an
asymmetrical relationship, in which cues, which occur earlier in the
temporal sequence of events, predict outcomes, which occur later. If it is
simply an association, the temporal sequence of the stimuli should not
matter. If it is predictive, the temporal order of events should affect
learning whenever there is not a one-to-one mapping between cues and
outcomes.

Secondly, Experiment 2 tests whether learning of speech cues is
based only on positive co-occurrence between cues and outcomes or
whether cues are also unlearned when cues are present and outcomes
are not present. If learning is based only on positive co-occurrences, we
should see learning of the statistical structure. That is, participants
should learn the probability with which particular cues are associated
with particular outcomes. If only positive co-occurrence is important,
then, when the co-occurrence of a cue and an outcome is not reliable,
responses should approximate the distribution of co-occurrences.
However, if unlearning is an inherent part of learning speech cues, then
cues will be downweighted when they do not predict outcomes.
Importantly, the downweighting of unreliable (non-discriminative) cues,
along with strengthening of reliable (discriminative) cues, can lead to
discriminative cues having greater relative strength, allowing listeners
to ignore the unhelpful non-discriminative cues and base their re-
sponses on the discriminative ones.

Unlearning has been shown to affect acquisition of semantic cate-
gories, specifically, visually presented ‘species of alien’ objects
(Ramscar, Yarlett, et al., 2010). A salient visual cue corresponded to
particular labels (outcomes) on most trials, but corresponded to dif-
ferent labels on one quarter of trials. This cue was therefore frequent,
but not fully discriminative. In order to correctly identify the labels,
participants had to learn to ignore the non-discriminative salient cue
and use a set of more subtle cues for selecting labels. The critical ma-
nipulation was the order of cues and outcomes: either labels preceded
cues or cues preceded labels. Results showed that participants did
equally well in either presentation order for high-frequency items, but
for low-frequency items, accuracy was higher in the discriminative
(cue–outcome) order than the non-discriminative (outcome–cue) order.
In the non-discriminative order, participants based their responses on
the salient but non-discriminative cue. But in the discriminative order
participants learned to use the discriminative cues to instead select the
correct label. This seems to be because they were able to make use of
feedback from prediction error to downweight the non-discriminative cue.

As a consequence of this same principle, suffixes have a learning
advantage over prefixes due to their position in the sentence (Clair,
Monaghan, & Ramscar, 2009; Hoppe, 2016) and Chinese character
pronunciation and meanings are learned better with a delay between

J.S. Nixon Cognition 197 (2020) 104081

9



character presentation and Pinyin or translation compared to simulta-
neous presentation (Chung, 2003). Similarly, Colunga et al. (2009)
showed that rather than a bidirectional mapping between word and
referent, word learning is better characterised as a predictive re-
lationship, in which the linguistic cues are used to predict the intended
meaning of an utterance.

While Ramscar, Yarlett, et al. (2010) investigated learning of se-
mantic categories, in the present study, the order effect was tested for
learning of speech sounds. Experiment 2 tests the prediction that speech
cues are learned better when they precede the semantic outcomes. As in
Ramscar, Yarlett, et al. (2010), one set of stimuli is simple, without
internal structure and the other set is complex and variable with both
helpful, discriminative cues and unhelpful non-discriminative cues.
Non-discriminative cues are those that have a high probability of oc-
curring with the outcome, but which are unreliable because they also
occur with other outcomes. The temporal structure of learning events is
manipulated such that for each participant either the simple stimuli or
the complex stimuli occur first on each trial. When the complex stimuli
occur first, competition can occur between the various cues, leading to
an increase in weighting for reliable cues and a decrease for unreliable
cues. When the simple stimuli occur first, there is no variation in the
cues and thus no cue competition. In this case, learning is expected to
reflect the probabilistic relationship with the complex stimuli.

If participants learn speech sounds as a result of cue competition
and negative evidence, as predicted by discriminative learning, we
expect higher accuracy in the discriminative, compared to the non-
discriminative order. If participants learn speech sounds by positive
evidence alone, we expect to see no difference between conditions,
because the stimulus co-occurrences on each trial are the same in the
two conditions.

3.1. Method

The online game set up was the same as Experiment 1.

3.1.1. Participants
Participants were 93 native speakers of US English who did not

participate in Experiment 1.

3.1.2. Stimuli
Because the present study investigates speech sound acquisition, in

what follows, the acoustic stimuli will be referred to as cues and the
visually presented semantic stimuli will be referred to as outcomes. This
terminology will apply regardless of the presentation order. Auditory
stimuli (cues) were three different base syllables (‘tshe’, ‘o’, ‘phe’) with
six different lexical tones. Taiwan Southern Min has retained seven of
the eight late Middle Chinese tones. The present study includes six of
these: high (‘yin level’, Yin Ping), falling (‘rising’, Shang Sheng), low (‘yin
departing’, Yin Ru), low-checked (‘yin entering’, Yin Ru), rising (‘yang
level’, Yang Ping) and high-checked (‘yang entering’, Yang Ru).

The high and low tones have a flat contour; the rising and falling

tones have, as their names suggest, rising and falling contours, re-
spectively; the checked tones begin with an initial flat contour and end
with a sharp drop. Two different tones occurred with each base syllable
(e.g. ‘tshe_low’, ‘tshe_rising’), resulting in six different tonal syllables.
Because more variable stimuli has been shown to facilitate learning
through downweighting of non-discriminative acoustic dimensions
(Nixon et al., 2016; Rost & McMurray, 2010), two tokens of each tonal
syllable were produced for acoustic variability. Visual stimuli (out-
comes) were three coloured shapes (red circle, yellow triangle, blue
square). Each image was randomly assigned to an auditory pair and this
mapping was the same for all participants.

3.1.3. Experiment design
During training, three tonal syllables occurred with high frequency

(75% of training trials) and the other three with low frequency (25%).
Importantly, although the same three base syllables occurred in both
high- and low-frequency sets, the syllables corresponded to different
image stimuli in the two sets (see Fig. 7). That is, a given base syllable
corresponded to one image on 75% of trials and another image on the
other 25% of trials. For example, the base syllable (e.g. ‘phe’) corre-
sponded to a given image in the high frequency stimuli (e.g. ‘phe_-
falling’; blue square), but corresponded to a different image in the low
frequency stimuli (e.g. ‘phe_high checked’; yellow triangle). Therefore,
the base syllable did not reliably predict the target images. To correctly
identify images corresponding to low-frequency stimuli, participants
needed to ignore the more salient cue – the base syllable – and instead
use tone to select the images.

3.1.4. Trial procedure
Experiment 2 consisted of two phases: training and test. During

training, there was only one image on the screen and one auditory word
was presented. Participants simply clicked the image to continue to the
next trial. Stimuli were presented in one of two orders. Either spoken
words (cues) were presented, followed by images (discriminative order)
or images (outcomes) were presented, followed by spoken words (non-
discriminative order). There was an inter-stimulus interval of 1200 ms
and an inter-trial interval of 1000 ms (Fig. 9).

During test, one image appeared on each trial with three unlabelled
‘key’ icons (as on a keyboard) underneath indicating the spoken words.
Three auditory stimuli (either the high- or low-frequency set) were
presented in random order. Unlike the training phase, there were equal
numbers of high- and low-frequency items in the test. The corre-
sponding key icon was highlighted as each auditory stimulus was pre-
sented. Participants responded by clicking one of the keys to select the
corresponding spoken word.

3.2. Analysis and results

A glmer model tested effects of presentation order on likelihood of
participants selecting target versus competitor words. The model in-
cluded a two-level factor of training frequency (high versus low), a two-

Fig. 7. Stimuli in Experiment 2. Outcomes were three co-
loured shapes (top). Cues occurred either with high frequency
(second row) or low frequency (bottom). Tones (in bold) were
reliable, discriminative cues to the image outcomes (hc = high-
checked; lc = low-checked). The same three base syllables
occurred in both the high- and low-frequency sets of words;
however, critically, each base syllable corresponded to a dif-
ferent image between the high-frequency set and the low-
frequency set. For example, the syllable ‘phe’ occurs with both
yellow triangle and blue square. This made the base syllables a
non-discriminative cue. In order to correctly learn the corre-
spondences, participants had to ignore the syllable and base
responses on the tones. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web
version of this article.)
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level factor of order (discriminative versus non-discriminative) and the
two-way interaction, each of which significantly improved model fit.
The distractor words (i.e. words in which neither the syllable nor the
tone occurred with the image outcomes during training) are not in-
cluded in the analysis as there were very few distractor responses and
they are not relevant to the hypothesis. Participant gender was also
tested, but did not improve model fit, so was removed. To account for
differences between items, participants and the effect of frequency on
participants, random intercepts were included for item and the inter-
action between participant and frequency. Models with random slopes
did not converge and participant random slopes led to high correla-
tions. Based on results of Ramscar, Yarlett, et al. (2010), a significant
effect was expected only for low-frequency items.

The model summary is shown in Table 4. The response variable was
competitor (0) versus target (1). On the intercept is the discriminative
condition for low-frequency items. The interaction between condition
and frequency was significant. Most importantly, there were

significantly fewer correct target responses in the non-discriminative
condition, compared to the discriminative condition for low-frequency
items. Accuracy was significantly higher for high-frequency than low-
frequency items, but for high-frequency items, there was no difference
between conditions =p( 0.272).

A visualisation of the model estimates for Experiment 2 is shown in
Fig. 10. The estimated proportion of clicks on the correct target word in
the cue–outcome order (left) and the non-discriminative, outcome–cue
order (right) is shown for high-frequency (blue, dashed line) and low-
frequency stimuli (red, solid line). For high-frequency stimuli, the
target word was correctly selected in both conditions with very high
accuracy and with no difference between conditions. For low-frequency
stimuli, participants selected the target significantly more often in the
cue–outcome order than the outcome–cue order.

3.3. Discussion

Experiment 2 investigated the effects of the temporal order of cues
and outcomes. Learning of low-frequency speech cues was significantly
better when cues preceded outcomes, compared to when outcomes
preceded cues. This demonstrates that there is an asymmetry in the
structure of learning events. Rather than a simple ‘association’, a bi-
directional relation, the relationship between acoustic cues and their
outcomes appears to be predictive. Learning speech sounds seems to be
a process of acquiring expectations from acoustic cues about following
semantic outcomes (see also Colunga et al., 2009). When multiple cues

Fig. 8. Illustration of unlearning and the effect of cue–out-
come order in Experiment 2. In this illustrative example, cues
are the colours of the squares: red, blue or yellow; outcomes
are the circle colours: black or grey. Arrow thickness indicates
(very approximately) connection strength. Discriminative
order (left). Cues precede outcomes, so they can compete for
connection strength. Top panel: red and blue predict the black
outcome and gain connection strength. Middle panel: blue and
yellow gain connection strength to the grey outcome – si-
multaneously, they lose connection strength to the black
outcome. Bottom panel: in a later trial, blue and red again
occur with the black outcome. But the connection weight from
blue has weakened (thinner arrow), because it occurred with a
different outcome in a previous trial (i.e. in the middle panel).
Blue is downweighted so that its connection strength becomes
weak. Over time, blue is unlearned. In addition, the connection
strength of red and blue to the grey outcome weakens, due to
their occurrence with the black outcome on the current trial.
Non-discriminative order (right). Outcomes precede cues,
so there is no competition between cues for connection
strength. Top panel: connection strength increases between
co-occurring items. Middle and bottom panels: connection
strength increases between co-occurring items and decreases
between items that do not co-occur. Connection strength
simply fluctuates up and down. No difference in the relative
connection strength between cues and outcomes occurs. Only
the conditional probabilities are learned. (For interpretation
of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 9. Training trial procedure Experiment 2. In the discriminative order (top),
the spoken cues precede the image outcome; in the non-discriminative order
(bottom), the image outcome precedes the cues.

Table 4
Model summary for the effects of cue–outcome order on selection of the target
versus competitor word. Model is dummy coded.

Fixed effects Estimate Std. error z -value < ∣ ∣Pr z( )

(Intercept) 1.0430 0.4051 2.575 0.0100
Condition = non-discriminatve −1.1984 0.5071 −2.363 0.018
Frequency = high 2.8999 0.6139 4.723 < 0.001
Non-discriminative:high 1.7634 0.7753 2.275 0.023
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are present and they differ in their informativity about the outcome, cue
competition will lead to greater connection strength for informative
cues compared to uninformative cues (Ramscar, Yarlett, et al., 2010).

Notably, this is due not only to the increases in connection strength
for co-occurring cues and outcomes, but also due to weakening of
connections from present cues to absent outcomes. When all the various
cues occur first, predictions about the outcomes can be made based on
each of the cues. Cues that predict the outcomes are learned (connec-
tion weight increases), while cues that do not predict the outcome, i.e.
are present when an outcome is not present, are unlearned (connection
weight decreases). This leads to a difference in cue weighting such that
cues that predict outcomes have strong connections and those that do
not reliably predict the outcome have weaker connections. This
learning of the value of cues may have an effect beyond the specific
cue–outcome pair learnt in a specific event. It is this difference in
cue–outcome weight that is proposed to develop with experience and
lead to speakers’ knowledge of – or expectations about – which cues are
important and unimportant in their language, as we saw in the in-
troduction. Perception of cues that are valuable for predicting outcomes
is honed and perception of those that are not valuable for predicting
outcomes becomes poor, both as a consequence of the error-driven
adjustments to cue–outcome weight.

A different learning trajectory emerged in the present results when
the simple stimuli occurred first. As with the complex stimuli, on some
trials one outcome would occur, in which case weight would increase,
and on other trials another outcome would occur, in which case the cue
weight to the first outcome would decrease. But because the cues in this
stimulus were always the same, there was no opportunity for compe-
tition between cues, to enhance cue strength to discriminative cues and
weaken strength to poor cues. Therefore, the association weight was
based on the statistical probability of the stimulus being followed by the
outcome. This is what we would expect with, for example, Hebbian
models (Hebb, 1949) or models based on co-occurrence statistics. In
summary, although the stimuli were identical between conditions, what
was learned differed, due to the difference in the predictive structure of
the training trials.

4. General discussion

Speech acquisition requires honing of discrimination of acoustic

cues that are relevant for the particular language being acquired. It also
involves reduction of discrimination of cues that are irrelevant. This
leads to a system well suited to the native language, but with dis-
advantages for learning non-native languages. Various accounts of this
process have been proposed in the literature. The present study suggests
that this process may be at least partially attributable to error-driven,
discriminative learning.

Two experiments tested two predictions of error-driven learning
derived from the Rescorla–Wagner model, namely cue competition and
unlearning, in the acquisition of non-native speech sounds. Experiment 1
showed that the blocking effect, well-known from learning theory
(Kamin, 1968, 1969; Rescorla, 1988; Rescorla & Wagner, 1972), also
affects acquisition of non-native acoustic cue dimensions. This shows
that speech sound acquisition involves cue competition, as predicted by
the Rescorla–Wagner equations. Since the statistical distribution of the
tested cue was identical in both conditions, the listeners did not learn
merely by picking up on distributional statistics of acoustic cues. In-
stead, learning appears to be driven by uncertainty – or error – and the
informativity of a given cue for reducing that error (Arnon & Ramscar,
2012; Ramscar, Dye, & McCauley, 2013). If the first cue is already in-
formative for predicting the outcome, the listener lacks the uncertainty
necessary to learn additional cues. In short, knowledge of an already-
learned acoustic cue can block later learning of new cues. As discussed
below, this bears striking resemblance to the pattern of results seen in
first and second language acquisition and may help explain effects of so-
called ‘transfer’ from the first language to the second.

In the real world, the speech signal is complex and always contains
multiple acoustic cues. This means that cue competition comes into
play in multiple ways. In classic blocking experiments, as well as in
Experiment 1, a single cue was learned as a strong predictor. Given that
the real-world speech signal is highly variable, cues may sometimes
spuriously co-occur with a given outcome, but are not consistent or
occur with other outcomes, so are not reliable cues. In these cases, as
shown in Experiment 2, learning is affected by the predictive structure
of learning events, in particular the temporal order of cues versus
outcomes. If unreliable speech cues occur before an associated outcome
– as in the discriminative, cue–outcome order in Experiment 2 – pre-
dictions about the following outcome can be generated, and adjust-
ments made when the outcome differs from expectations. This leads to
the unreliable cue being downweighted or unlearnt. However, if the
semantic outcome occurs before the cue – as in the non-discriminative,
outcome–cue order – only the statistical probability of co-occurrence
will be learnt. In the experiment, this led to the competitor item being
learnt in the non-discriminative order, due to the high correlation be-
tween the segmental syllable and the competitor image.

Experiment 2 showed that unlearning plays an important role in the
learning of non-native cue dimensions. Learning not only occurs from
co-occurrence of cues and outcomes; a vital part of the learning process
is learning to ignore unreliable cues. Experiment 2 showed that this
unlearning is more likely to occur when the structure of learning events
is discriminative – that is, when there is the possibility for cue com-
petition to weaken the connection strength from unreliable cues.

Cue competition was involved in both experiments. However, the
role of cue competition differed between experiments. In Experiment 1,
there was no cue competition in the pre-training phase. Only one au-
ditory cue was presented, which always occurred with one correct
outcome. Only in the following training phase did cue competition
come into play. In this case, the first and second cues were competing to
predict the semantic outcome. All learning throughout the experiment
was ‘positive’ learning, i.e. strengthening of cue–outcome weights. In
the blocking condition, the first cue ‘won’ the competition, because it
had already gained associative strength during the pre-training phase.
This meant that for the remaining trials, the increase in strength was
small, because the error remaining in the model was small, and hence
the second cue could not ‘catch up’.

In Experiment 2, in contrast, cue competition was available from the

Fig. 10. Plot of the model estimates for the results of Experiment 2. Estimated
probability of correct responses is on the y-axis for high-frequency items (blue,
dashed line) and low-frequency items (red, solid line) for discriminative,
cue–outcome order (left) and the non-discriminative, outcome–cue order
(right). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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beginning of the experiment, but only in the discriminative (cue–out-
come) order condition. This was because when the complex, variable
cues in the acoustic stimuli occurred first in the trial, the unreliable,
non-discriminative cues could be downweighted due to cue competi-
tion. However, when the outcomes occurred first, there were no alter-
native cues that could compete. In this case, because no cue competi-
tion could occur, learning was instead based on the statistical structure
or co-occurrence probabilities. Responses were based on the segmental
syllable that occurred most often with a particular image. In the high-
frequency stimuli, this was the correct response. In the low-frequency
stimuli, this was the competitor image.

4.1. Implications for non-native speech acquisition

The present results may provide a way to account for the broad
pattern of changes in speech sound acquisition from the first months of
life into adulthood discussed in the introduction. When adults learn a
second language, they often have influences from their native language,
such as an ‘accent’ in production or difficulties discriminating some
sounds that are not relevant for discriminating messages in their native
language. From an error-driven learning perspective, these can be ex-
plained as cases of both blocking and unlearning. After years, even
decades, of experience with native speech cues, listeners have strong
expectations about which cues are informative and which are not. Cues
that are not discriminative have been downweighted, such that differ-
ences are difficult to perceive. This unlearning is useful in the native
language where these cues are irrelevant, but if these cues are used in
the target language, reversal of unlearning is required in order to learn
to discriminate them again.

While uninformative cues are weakened, discriminative cues are
strengthened. These already-learned discriminative cues may block
learning of new cues in the non-native language. This idea is supported
by the finding that the degree to which the native language interferes
with learning the non-native language, depends on the relationship be-
tween the specific native and non-native cues (e.g. Best et al., 1988;
Flege, 1987, 1995). When the target language uses a sound that is si-
milar (but not identical) to the native language, such as the sounds /u/
and /t/ in English and French, production is less accurate: both English-
L1 French-L2 and French-L1 English-L2 speakers produced second for-
mant (in /u/) and voice onset time values (in /t/) that were sig-
nificantly different to their native speaking counterparts (Flege, 1987).
However, when the sound in the target language is not similar to any
sound in the native language, such as French /y/ for English speakers,
production is more accurate (Flege, 1987). The blocking effects found
in Experiment 1 provide a straightforward explanation for this pattern.
There is a greater degree of transfer from the native-language when
learning similar sounds, compared to dissimilar sounds, because the
native sounds are more likely to block learning. The blocking effect may
also help explain the recent finding that distributional learning ex-
periments are less effective for adults than infants (Wanrooij, Boersma,
& van Zuijen, 2014), as adults’ learning is more likely to be blocked by
previous learning.

Japanese native listeners often have trouble discriminating English
/l/ and /r/ (Goto, 1971; Miyawaki et al., 1975), often relying on the
second formant (F2), while English listeners rely on the third formant
(F3) (Iverson et al., 2003; Lotto, Sato, & Diehl, 2004; Yamada &
Tohkura, 1990). However, when Lim and Holt (2011) trained native
Japanese speakers with stimuli with high variability in the F2 dimen-
sion, weighting of F2 was weakened and accuracy improved. It seems as
if unlearning the non-discriminative cue allowed the listeners to reas-
sign connection strength to the discriminative cue, F3.

In addition, listeners’ ability to discriminate non-native speech
sounds remains good for sounds that are not used discriminatively in
the native language, but which are also not used non-discriminatively in
the native language. This is the case with Zulu clicks, which are dis-
criminated well by native English infants and adults (Best et al., 1988).

It seems that, because English speakers tend to have little to no ex-
posure to unreliable variation of clicks in speech, these sounds are not
unlearned.

4.2. Implications for native-language speech acquisition

While the present study focused on learning of second-language
speech sounds, similar principles may also apply in first language ac-
quisition. Learning the meanings of words for colours and numbers
poses a challenge for young children, and these words are acquired late,
despite their high frequency of occurrence in child directed speech.
However, when presented in discriminative order (objects before
words, in this case) learning improves (Ramscar, Dye, et al., 2011;
Ramscar, Yarlett, et al., 2010). Words are also more learnable when
referents are attended before being spoken, compared to when they are
not visually attended (Cartmill et al., 2013).

Like these examples of children's word learning, it is possible that
early speech sound acquisition is also learned discriminatively. Werker
and Tees (1984) noted that honing of infant speech sound perception
for the native language occurs at about the time that the first words are
being learnt and proposed that these events might be related. This view
has been challenged, the argument being that in the first few months of
life, infants do not yet have a sufficient lexical knowledge to support
discrimination based on lexical contrasts (e.g. Maye & Gerken, 2000).
This claim is based on the assumption that minimal pairs would be
required. There are at least two possible explanations for how infants
could start to build up knowledge of native speech in an error-driven
model. Firstly, as shown in Experiment 2, error-driven learning requires
learning events to have a discriminative, cue-outcome structure. When
learning events do not have predictive structure, this results in patterns
of learning that resemble probability tracking. It is possible that infants
at this early age, either due to the stage of cognitive development or due
to the structure of their environment, are not yet able to learn from
prediction error, because they have not yet developed the suitable set of
outcomes to discriminate between. However, it is an assumption of
discriminative learning models that any discriminable perceptual in-
formation can participate in learning. Therefore, a second possibility is
that error-driven learning occurs from the beginning, based on all and
any perceptual events in the environment. In this case, the temporal
nature of speech leads to a situation in which cues that are temporally
early in the speech stream may predict temporally later cues. If young
infants learn the sounds of their language in this way, they would ac-
quire phonotactic knowledge at the same time as gradually losing dis-
crimination ability for non-discriminative sounds as they get older, as
has been documented for infants as they reach the second half year of
life (Werker & Tees, 1984). Further research is needed to investigate
this possibility.

4.3. Relation to learning in other domains

The blocking effects discussed above are also observed for many
other aspects of human learning. In language, blocking has been shown
to occur during second language morphology and vocabulary acquisi-
tion (Arnon & Ramscar, 2012; Chung, 2003; Ellis & Sagarra, 2010). In
word learning, if multiple cues occur with an outcome with complete
reliability during training, then learning is poorer than when cues are
variable (i.e. only occur on 75% of trials). If all cues are completely
reliable, learning is blocked. The variability means that certain cues are
absent on some trials, allowing learning to increase for the cues that are
present (Monaghan, Brand, Frost, & Taylor, 2017).

Furthermore, Apfelbaum and McMurray (2017) show that when
multiple word candidates are activated, learning does not wait until
word processing is finished and a single candidate is selected. Instead,
connection weights are formed between – in their case, visual target –
outcomes and these partially activated word candidates in real time. If
presentation of the visual targets is delayed so that word activation is

J.S. Nixon Cognition 197 (2020) 104081

13



complete before presentation, then these spurious associations are re-
duced.

In both Ramscar, Yarlett, et al. (2010) and the present study, one set
of stimuli was selected to be complex and the other simple. In Ramscar,
Yarlett, et al. (2010), the visual semantic categories contained complex
cues and labels were considered nondivisible chunks. In the present
study, the modalities of the stimuli were reversed. Words contained
complex speech cues; images were featureless without internal struc-
ture. However, in the real world, both objects and speech are highly
complex. During first language acquisition, infants will be exposed to
learning events in which either speech or objects occur in dis-
criminative order at different times, allowing them to learn dis-
criminatively about both speech sounds and objects in the world over
time.

Finally, it should be noted that the Rescorla–Wagner model has
acknowledged shortcomings (reviewed in Miller et al., 1995) and there
are aspects of the model still under debate (see also Kapatsinski, 2018,
for a discussion and some solutions). For example, in the Re-
scorla–Wagner model, connection weights are adjusted to outcomes
whether the outcomes are present or absent, but weights are only ad-
justed to cues that are present. There is discussion about whether
connection weight adjustments are also necessary for absent cues. Van
Hamme and Wasserman (1994) tested whether weights decrease to
absent cues in a causal judgment task when a set of three food types
(cues) were used to assess the cause of an allergic reaction. In this set
up, the food was judged by participants as a less likely cause of the
allergy on trials when the food was not present. On the basis of their
causal judgment results, Van Hamme and Wasserman (1994) argued for
an updated version of the Rescorla–Wagner model in which weights to
absent cues are adjusted directly.

Just how to deal with this issue is still under debate. In the
Rescorla–Wagner model, absent cues are dealt with indirectly, since
cues are competing for limited association strength of the outcome.
When present cues increase in strength, they gain relative strength over
the cues that are not present, i.e. the cues that are not present do not
decrease in strength absolutely, but they lose strength relative to the
other cues. In the van Hamme and Wasserman study, there was a
limited set of only three cues and one outcome that occurred or did not
occur, so it has been argued that the absence of cues may be more
salient and therefore may be more likely to be reflected in associative
strength under these circumstances. Also, implicit learning seems to
work best in automatic, unconscious process (Reber, 1989), but in Van
Hamme and Wasserman (1994) participants were making conscious,
evaluative judgments about the causal relation. This may increase the
likelihood of participants making logical inferences, or perhaps using

the allergy response as a cue to predict the cause, essentially reversing
the cue–outcome structure. But in any case, despite debate over details
of the best implementation of the model, the Rescorla–Wagner model
and error-driven, discriminative learning more generally, effectively
capture many learning phenomena that are missed by purely statistical
learning models.

5. Conclusion

In summary, the present study shows that, while experience of
linguistic input drives learning of speech sounds, learning does not
result directly from perceiving statistical distributions of cues in the
environment. Neither does it result only from strengthening connec-
tions between co-occurring stimuli. Instead, the combined results of the
two experiments suggest that learning is discriminative, driven by un-
certainty and prediction error and that weakening of uninformative
speech cues plays a crucial role in learning.

A practical conclusion that can be drawn from the present results is
that for non-native speech sound acquisition, learning of acoustic cues
may be more effective when the cues occur before, rather than after, the
semantic outcomes, so that learning can occur from prediction and
prediction error. Thus, non-discriminative cues can be downweighted,
allowing for better learning of the discriminative cues.
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